Compare commits
20 Commits
architectu
...
rt-test
Author | SHA1 | Date | |
---|---|---|---|
3f23242d6f | |||
0bc8fc2792 | |||
ff38cefdd3 | |||
03fdc050cc | |||
2ded03713d | |||
a135c765da | |||
b1e18443ba | |||
660b41aef8 | |||
d70c86c257 | |||
c04b072de6 | |||
b6d16e4f11 | |||
|
3936b6c160 | ||
fbcd5803b8 | |||
9394bc6c5a | |||
f928d8c2cf | |||
54338e55a9 | |||
7e1c7e935a | |||
416500f7fc | |||
8332b0df2d | |||
741dcce7b4 |
@@ -1,18 +1,97 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
def stereo_tensor_to_mono(waveform):
|
||||
|
||||
def stereo_tensor_to_mono(waveform: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Convert stereo (C, N) to mono (1, N). Ensures a channel dimension.
|
||||
"""
|
||||
if waveform.dim() == 1:
|
||||
waveform = waveform.unsqueeze(0) # (N,) -> (1, N)
|
||||
|
||||
if waveform.shape[0] > 1:
|
||||
# Average across channels
|
||||
mono_waveform = torch.mean(waveform, dim=0, keepdim=True)
|
||||
mono_waveform = torch.mean(waveform, dim=0, keepdim=True) # (1, N)
|
||||
else:
|
||||
# Already mono
|
||||
mono_waveform = waveform
|
||||
return mono_waveform
|
||||
|
||||
def stretch_tensor(tensor, target_length):
|
||||
scale_factor = target_length / tensor.size(1)
|
||||
|
||||
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
|
||||
def stretch_tensor(tensor: torch.Tensor, target_length: int) -> torch.Tensor:
|
||||
"""
|
||||
Stretch audio along time dimension to target_length.
|
||||
Input assumed (1, N). Returns (1, target_length).
|
||||
"""
|
||||
if tensor.dim() == 1:
|
||||
tensor = tensor.unsqueeze(0) # ensure (1, N)
|
||||
|
||||
return tensor
|
||||
tensor = tensor.unsqueeze(0) # (1, 1, N) for interpolate
|
||||
stretched = F.interpolate(
|
||||
tensor, size=target_length, mode="linear", align_corners=False
|
||||
)
|
||||
return stretched.squeeze(0) # back to (1, target_length)
|
||||
|
||||
|
||||
def pad_tensor(audio_tensor: torch.Tensor, target_length: int = 128) -> torch.Tensor:
|
||||
"""
|
||||
Pad to fixed length. Input assumed (1, N). Returns (1, target_length).
|
||||
"""
|
||||
if audio_tensor.dim() == 1:
|
||||
audio_tensor = audio_tensor.unsqueeze(0)
|
||||
|
||||
current_length = audio_tensor.shape[-1]
|
||||
if current_length < target_length:
|
||||
padding_needed = target_length - current_length
|
||||
padding_tuple = (0, padding_needed)
|
||||
padded_audio_tensor = F.pad(
|
||||
audio_tensor, padding_tuple, mode="constant", value=0
|
||||
)
|
||||
else:
|
||||
padded_audio_tensor = audio_tensor[..., :target_length] # crop if too long
|
||||
|
||||
return padded_audio_tensor
|
||||
|
||||
|
||||
def split_audio(
|
||||
audio_tensor: torch.Tensor, chunk_size: int = 128
|
||||
) -> list[torch.Tensor]:
|
||||
"""
|
||||
Split into chunks of (1, chunk_size).
|
||||
"""
|
||||
if not isinstance(chunk_size, int) or chunk_size <= 0:
|
||||
raise ValueError("chunk_size must be a positive integer.")
|
||||
|
||||
if audio_tensor.dim() == 1:
|
||||
audio_tensor = audio_tensor.unsqueeze(0)
|
||||
|
||||
num_samples = audio_tensor.shape[-1]
|
||||
if num_samples == 0:
|
||||
return []
|
||||
|
||||
chunks = list(torch.split(audio_tensor, chunk_size, dim=-1))
|
||||
return chunks
|
||||
|
||||
|
||||
def reconstruct_audio(chunks: list[torch.Tensor]) -> torch.Tensor:
|
||||
"""
|
||||
Reconstruct audio from chunks. Returns (1, N).
|
||||
"""
|
||||
if not chunks:
|
||||
return torch.empty(1, 0)
|
||||
|
||||
chunks = [c if c.dim() == 2 else c.unsqueeze(0) for c in chunks]
|
||||
try:
|
||||
reconstructed_tensor = torch.cat(chunks, dim=-1)
|
||||
except RuntimeError as e:
|
||||
raise RuntimeError(
|
||||
f"Failed to concatenate audio chunks. Ensure chunks have compatible shapes "
|
||||
f"for concatenation along dim -1. Original error: {e}"
|
||||
)
|
||||
|
||||
return reconstructed_tensor
|
||||
|
||||
|
||||
def normalize(audio_tensor: torch.Tensor, eps: float = 1e-8) -> torch.Tensor:
|
||||
max_val = torch.max(torch.abs(audio_tensor))
|
||||
if max_val < eps:
|
||||
return audio_tensor # silence, skip normalization
|
||||
return audio_tensor / max_val
|
||||
|
@@ -18,6 +18,7 @@ SISU (Super Ingenious Sound Upscaler) is a project that uses GANs (Generative Ad
|
||||
1. **Set Up**:
|
||||
- Make sure you have Python installed (version 3.8 or higher).
|
||||
- Install needed packages: `pip install -r requirements.txt`
|
||||
- Install current version of PyTorch (CUDA/ROCm/What ever your device supports)
|
||||
|
||||
2. **Prepare Audio Data**:
|
||||
- Put your audio files in the `dataset/good` folder.
|
||||
|
0
__init__.py
Normal file
0
__init__.py
Normal file
97
app.py
Normal file
97
app.py
Normal file
@@ -0,0 +1,97 @@
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
import torchcodec
|
||||
import tqdm
|
||||
|
||||
import AudioUtils
|
||||
from generator import SISUGenerator
|
||||
|
||||
# Init script argument parser
|
||||
parser = argparse.ArgumentParser(description="Training script")
|
||||
parser.add_argument("--device", type=str, default="cpu", help="Select device")
|
||||
parser.add_argument("--model", type=str, help="Model to use for upscaling")
|
||||
parser.add_argument(
|
||||
"--clip_length",
|
||||
type=int,
|
||||
default=16384,
|
||||
help="Internal clip length, leave unspecified if unsure",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sample_rate", type=int, default=44100, help="Output clip sample rate"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bitrate",
|
||||
type=int,
|
||||
default=192000,
|
||||
help="Output clip bitrate",
|
||||
)
|
||||
parser.add_argument("-i", "--input", type=str, help="Input audio file")
|
||||
parser.add_argument("-o", "--output", type=str, help="Output audio file")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.sample_rate < 8000:
|
||||
print(
|
||||
"Sample rate cannot be lower than 8000! (44100 is recommended for base models)"
|
||||
)
|
||||
exit()
|
||||
|
||||
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
|
||||
print(f"Using device: {device}")
|
||||
|
||||
generator = SISUGenerator().to(device)
|
||||
|
||||
generator = torch.compile(generator)
|
||||
|
||||
models_dir = args.model
|
||||
clip_length = args.clip_length
|
||||
input_audio = args.input
|
||||
output_audio = args.output
|
||||
|
||||
if models_dir:
|
||||
ckpt = torch.load(models_dir, map_location=device)
|
||||
generator.load_state_dict(ckpt["G"])
|
||||
else:
|
||||
print(
|
||||
"Generator model (--model) isn't specified. Do you have the trained model? If not, you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)"
|
||||
)
|
||||
|
||||
|
||||
def start():
|
||||
# To Mono!
|
||||
decoder = torchcodec.decoders.AudioDecoder(input_audio)
|
||||
|
||||
decoded_samples = decoder.get_all_samples()
|
||||
audio = decoded_samples.data
|
||||
original_sample_rate = decoded_samples.sample_rate
|
||||
|
||||
audio = AudioUtils.stereo_tensor_to_mono(audio)
|
||||
audio = AudioUtils.normalize(audio)
|
||||
|
||||
resample_transform = torchaudio.transforms.Resample(
|
||||
original_sample_rate, args.sample_rate
|
||||
)
|
||||
|
||||
audio = resample_transform(audio)
|
||||
|
||||
splitted_audio = AudioUtils.split_audio(audio, clip_length)
|
||||
splitted_audio_on_device = [t.to(device) for t in splitted_audio]
|
||||
processed_audio = []
|
||||
|
||||
for clip in tqdm.tqdm(splitted_audio_on_device, desc="Processing..."):
|
||||
processed_audio.append(generator(clip))
|
||||
|
||||
reconstructed_audio = AudioUtils.reconstruct_audio(processed_audio)
|
||||
print(f"Saving {output_audio}!")
|
||||
torchaudio.save_with_torchcodec(
|
||||
uri=output_audio,
|
||||
src=reconstructed_audio,
|
||||
sample_rate=args.sample_rate,
|
||||
channels_first=True,
|
||||
compression=args.bitrate,
|
||||
)
|
||||
|
||||
|
||||
start()
|
88
data.py
88
data.py
@@ -1,35 +1,79 @@
|
||||
from torch.utils.data import Dataset
|
||||
import torch.nn.functional as F
|
||||
import torch
|
||||
import torchaudio
|
||||
import os
|
||||
import random
|
||||
|
||||
import torchaudio.transforms as T
|
||||
import torchaudio
|
||||
import torchcodec.decoders as decoders
|
||||
import tqdm
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
import AudioUtils
|
||||
|
||||
|
||||
class AudioDataset(Dataset):
|
||||
#audio_sample_rates = [8000, 11025, 16000, 22050]
|
||||
audio_sample_rates = [11025]
|
||||
|
||||
def __init__(self, input_dir):
|
||||
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
|
||||
def __init__(self, input_dir, clip_length: int = 8000, normalize: bool = True):
|
||||
self.clip_length = clip_length
|
||||
self.normalize = normalize
|
||||
|
||||
input_files = [
|
||||
os.path.join(input_dir, f)
|
||||
for f in os.listdir(input_dir)
|
||||
if os.path.isfile(os.path.join(input_dir, f))
|
||||
and f.lower().endswith((".wav", ".mp3", ".flac"))
|
||||
]
|
||||
|
||||
data = []
|
||||
for audio_clip in tqdm.tqdm(
|
||||
input_files, desc=f"Processing {len(input_files)} audio file(s)"
|
||||
):
|
||||
decoder = decoders.AudioDecoder(audio_clip)
|
||||
decoded_samples = decoder.get_all_samples()
|
||||
|
||||
audio = decoded_samples.data.float() # ensure float32
|
||||
original_sample_rate = decoded_samples.sample_rate
|
||||
|
||||
audio = AudioUtils.stereo_tensor_to_mono(audio)
|
||||
if normalize:
|
||||
audio = AudioUtils.normalize(audio)
|
||||
|
||||
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
||||
resample_transform_low = torchaudio.transforms.Resample(
|
||||
original_sample_rate, mangled_sample_rate
|
||||
)
|
||||
resample_transform_high = torchaudio.transforms.Resample(
|
||||
mangled_sample_rate, original_sample_rate
|
||||
)
|
||||
|
||||
low_audio = resample_transform_high(resample_transform_low(audio))
|
||||
|
||||
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length)
|
||||
splitted_low_quality_audio = AudioUtils.split_audio(low_audio, clip_length)
|
||||
|
||||
if not splitted_high_quality_audio or not splitted_low_quality_audio:
|
||||
continue # skip empty or invalid clips
|
||||
|
||||
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(
|
||||
splitted_high_quality_audio[-1], clip_length
|
||||
)
|
||||
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(
|
||||
splitted_low_quality_audio[-1], clip_length
|
||||
)
|
||||
|
||||
for high_quality_data, low_quality_data in zip(
|
||||
splitted_high_quality_audio, splitted_low_quality_audio
|
||||
):
|
||||
data.append(
|
||||
(
|
||||
(high_quality_data, low_quality_data),
|
||||
(original_sample_rate, mangled_sample_rate),
|
||||
)
|
||||
)
|
||||
|
||||
self.audio_data = data
|
||||
|
||||
def __len__(self):
|
||||
return len(self.input_files)
|
||||
|
||||
return len(self.audio_data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
# Load high-quality audio
|
||||
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
|
||||
|
||||
# Generate low-quality audio with random downsampling
|
||||
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
||||
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
|
||||
low_quality_audio = resample_transform_low(high_quality_audio)
|
||||
|
||||
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
||||
low_quality_audio = resample_transform_high(low_quality_audio)
|
||||
|
||||
return (AudioUtils.stereo_tensor_to_mono(high_quality_audio), original_sample_rate), (AudioUtils.stereo_tensor_to_mono(low_quality_audio), mangled_sample_rate)
|
||||
return self.audio_data[idx]
|
||||
|
@@ -1,37 +1,75 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.utils as utils
|
||||
|
||||
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
|
||||
|
||||
def discriminator_block(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
):
|
||||
padding = (kernel_size // 2) * dilation
|
||||
return nn.Sequential(
|
||||
utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)),
|
||||
nn.BatchNorm1d(out_channels),
|
||||
nn.LeakyReLU(0.2, inplace=True) # Changed activation to LeakyReLU
|
||||
conv_layer = nn.Conv1d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
|
||||
if spectral_norm:
|
||||
conv_layer = utils.spectral_norm(conv_layer)
|
||||
|
||||
layers = [conv_layer]
|
||||
layers.append(nn.LeakyReLU(0.2, inplace=True))
|
||||
|
||||
if use_instance_norm:
|
||||
layers.append(nn.InstanceNorm1d(out_channels))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super(AttentionBlock, self).__init__()
|
||||
self.attention = nn.Sequential(
|
||||
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
attention_weights = self.attention(x)
|
||||
return x * attention_weights
|
||||
|
||||
|
||||
class SISUDiscriminator(nn.Module):
|
||||
def __init__(self):
|
||||
def __init__(self, layers=32):
|
||||
super(SISUDiscriminator, self).__init__()
|
||||
layers = 4 # Increased base layer count
|
||||
self.model = nn.Sequential(
|
||||
# Initial Convolution
|
||||
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample
|
||||
|
||||
# Core Discriminator Blocks with varied kernels and dilations
|
||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample
|
||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
|
||||
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=16),
|
||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=8),
|
||||
discriminator_block(layers * 2, layers, kernel_size=3, dilation=1),
|
||||
# Final Convolution
|
||||
discriminator_block(layers, 1, kernel_size=3, stride=1),
|
||||
discriminator_block(1, layers, kernel_size=7, stride=1),
|
||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2),
|
||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2),
|
||||
AttentionBlock(layers * 4),
|
||||
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
|
||||
discriminator_block(layers * 8, layers * 2, kernel_size=5, stride=2),
|
||||
discriminator_block(
|
||||
layers * 2,
|
||||
1,
|
||||
spectral_norm=False,
|
||||
use_instance_norm=False,
|
||||
),
|
||||
)
|
||||
|
||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||
|
||||
def forward(self, x):
|
||||
# Gaussian noise is not necessary here for discriminator as it is already implicit in the training process
|
||||
x = self.model(x)
|
||||
x = self.global_avg_pool(x)
|
||||
x = x.view(-1, 1)
|
||||
x = x.view(x.size(0), -1)
|
||||
return x
|
||||
|
95
generator.py
95
generator.py
@@ -1,36 +1,81 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
|
||||
nn.BatchNorm1d(out_channels),
|
||||
nn.PReLU()
|
||||
)
|
||||
|
||||
class SISUGenerator(nn.Module):
|
||||
def __init__(self):
|
||||
super(SISUGenerator, self).__init__()
|
||||
layer = 4 # Increased base layer count
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.Conv1d(1, layer, kernel_size=7, padding=3),
|
||||
nn.BatchNorm1d(layer),
|
||||
nn.Conv1d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=kernel_size,
|
||||
dilation=dilation,
|
||||
padding=(kernel_size // 2) * dilation,
|
||||
),
|
||||
nn.InstanceNorm1d(out_channels),
|
||||
nn.PReLU(),
|
||||
)
|
||||
self.conv_blocks = nn.Sequential(
|
||||
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
||||
conv_block(layer, layer*2, kernel_size=5, dilation=2), # Local Context
|
||||
conv_block(layer*2, layer*2, kernel_size=3, dilation=16), # Longer range dependencies
|
||||
conv_block(layer*2, layer*2, kernel_size=5, dilation=8), # Wider context
|
||||
conv_block(layer*2, layer, kernel_size=5, dilation=2), # Local Context
|
||||
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
||||
)
|
||||
self.final_layer = nn.Sequential(
|
||||
nn.Conv1d(layer, 1, kernel_size=3, padding=1),
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
Simple Channel Attention Block. Learns to weight channels based on their importance.
|
||||
"""
|
||||
|
||||
def __init__(self, channels):
|
||||
super(AttentionBlock, self).__init__()
|
||||
self.attention = nn.Sequential(
|
||||
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
attention_weights = self.attention(x)
|
||||
return x * attention_weights
|
||||
|
||||
|
||||
class ResidualInResidualBlock(nn.Module):
|
||||
def __init__(self, channels, num_convs=3):
|
||||
super(ResidualInResidualBlock, self).__init__()
|
||||
|
||||
self.conv_layers = nn.Sequential(
|
||||
*[conv_block(channels, channels) for _ in range(num_convs)]
|
||||
)
|
||||
|
||||
self.attention = AttentionBlock(channels)
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
x = self.conv1(x)
|
||||
x = self.conv_blocks(x)
|
||||
x = self.final_layer(x)
|
||||
x = self.conv_layers(x)
|
||||
x = self.attention(x)
|
||||
return x + residual
|
||||
|
||||
|
||||
class SISUGenerator(nn.Module):
|
||||
def __init__(self, channels=16, num_rirb=4, alpha=1):
|
||||
super(SISUGenerator, self).__init__()
|
||||
self.alpha = alpha
|
||||
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.Conv1d(1, channels, kernel_size=7, padding=3),
|
||||
nn.InstanceNorm1d(channels),
|
||||
nn.PReLU(),
|
||||
)
|
||||
|
||||
self.rir_blocks = nn.Sequential(
|
||||
*[ResidualInResidualBlock(channels) for _ in range(num_rirb)]
|
||||
)
|
||||
|
||||
self.final_layer = nn.Sequential(
|
||||
nn.Conv1d(channels, 1, kernel_size=3, padding=1), nn.Tanh()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
residual_input = x
|
||||
x = self.conv1(x)
|
||||
x_rirb_out = self.rir_blocks(x)
|
||||
learned_residual = self.final_layer(x_rirb_out)
|
||||
output = residual_input + self.alpha * learned_residual
|
||||
|
||||
return torch.tanh(output)
|
||||
|
@@ -1,14 +0,0 @@
|
||||
filelock==3.16.1
|
||||
fsspec==2024.10.0
|
||||
Jinja2==3.1.4
|
||||
MarkupSafe==2.1.5
|
||||
mpmath==1.3.0
|
||||
networkx==3.4.2
|
||||
numpy==2.2.1
|
||||
pytorch-triton-rocm==3.2.0+git0d4682f0
|
||||
setuptools==70.2.0
|
||||
sympy==1.13.1
|
||||
torch==2.6.0.dev20241222+rocm6.2.4
|
||||
torchaudio==2.6.0.dev20241222+rocm6.2.4
|
||||
tqdm==4.67.1
|
||||
typing_extensions==4.12.2
|
354
training.py
354
training.py
@@ -1,189 +1,245 @@
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
import tqdm
|
||||
from accelerate import Accelerator
|
||||
from torch.utils.data import DataLoader, DistributedSampler
|
||||
|
||||
import argparse
|
||||
|
||||
import math
|
||||
|
||||
from torch.utils.data import random_split
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import AudioUtils
|
||||
from data import AudioDataset
|
||||
from generator import SISUGenerator
|
||||
from discriminator import SISUDiscriminator
|
||||
from generator import SISUGenerator
|
||||
from utils.TrainingTools import discriminator_train, generator_train
|
||||
|
||||
def perceptual_loss(y_true, y_pred):
|
||||
return torch.mean((y_true - y_pred) ** 2)
|
||||
|
||||
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
|
||||
optimizer_d.zero_grad()
|
||||
|
||||
# Forward pass for real samples
|
||||
discriminator_decision_from_real = discriminator(high_quality[0])
|
||||
d_loss_real = criterion_d(discriminator_decision_from_real, real_labels)
|
||||
|
||||
# Forward pass for fake samples (from generator output)
|
||||
generator_output = generator(low_quality[0])
|
||||
discriminator_decision_from_fake = discriminator(generator_output.detach())
|
||||
d_loss_fake = criterion_d(discriminator_decision_from_fake, fake_labels)
|
||||
|
||||
# Combine real and fake losses
|
||||
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
||||
|
||||
# Backward pass and optimization
|
||||
d_loss.backward()
|
||||
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
|
||||
optimizer_d.step()
|
||||
|
||||
return d_loss
|
||||
|
||||
def generator_train(low_quality, real_labels):
|
||||
optimizer_g.zero_grad()
|
||||
|
||||
# Forward pass for fake samples (from generator output)
|
||||
generator_output = generator(low_quality[0])
|
||||
discriminator_decision = discriminator(generator_output)
|
||||
g_loss = criterion_g(discriminator_decision, real_labels)
|
||||
|
||||
g_loss.backward()
|
||||
optimizer_g.step()
|
||||
return generator_output
|
||||
|
||||
# Init script argument parser
|
||||
parser = argparse.ArgumentParser(description="Training script")
|
||||
parser.add_argument("--generator", type=str, default=None,
|
||||
help="Path to the generator model file")
|
||||
parser.add_argument("--discriminator", type=str, default=None,
|
||||
help="Path to the discriminator model file")
|
||||
|
||||
# ---------------------------
|
||||
# Argument parsing
|
||||
# ---------------------------
|
||||
parser = argparse.ArgumentParser(description="Training script (safer defaults)")
|
||||
parser.add_argument("--resume", action="store_true", help="Resume training")
|
||||
parser.add_argument(
|
||||
"--epochs", type=int, default=5000, help="Number of training epochs"
|
||||
)
|
||||
parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
|
||||
parser.add_argument("--num_workers", type=int, default=2, help="DataLoader num_workers")
|
||||
parser.add_argument("--debug", action="store_true", help="Print debug logs")
|
||||
parser.add_argument(
|
||||
"--no_pin_memory", action="store_true", help="Disable pin_memory even on CUDA"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Check for CUDA availability
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
print(f"Using device: {device}")
|
||||
# ---------------------------
|
||||
# Init accelerator
|
||||
# ---------------------------
|
||||
|
||||
# Initialize dataset and dataloader
|
||||
dataset_dir = './dataset/good'
|
||||
dataset = AudioDataset(dataset_dir)
|
||||
accelerator = Accelerator(mixed_precision="bf16")
|
||||
|
||||
# ========= MULTIPLE =========
|
||||
|
||||
# dataset_size = len(dataset)
|
||||
# train_size = int(dataset_size * .9)
|
||||
# val_size = int(dataset_size-train_size)
|
||||
|
||||
#train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
||||
|
||||
# train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
|
||||
# val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
|
||||
|
||||
# ========= SINGLE =========
|
||||
|
||||
train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
|
||||
|
||||
# Initialize models and move them to device
|
||||
# ---------------------------
|
||||
# Models
|
||||
# ---------------------------
|
||||
generator = SISUGenerator()
|
||||
discriminator = SISUDiscriminator()
|
||||
|
||||
if args.generator is not None:
|
||||
generator.load_state_dict(torch.load(args.generator, weights_only=True))
|
||||
if args.discriminator is not None:
|
||||
discriminator.load_state_dict(torch.load(args.discriminator, weights_only=True))
|
||||
accelerator.print("🔨 | Compiling models...")
|
||||
|
||||
generator = generator.to(device)
|
||||
discriminator = discriminator.to(device)
|
||||
generator = torch.compile(generator)
|
||||
discriminator = torch.compile(discriminator)
|
||||
|
||||
# Loss
|
||||
criterion_g = nn.MSELoss()
|
||||
criterion_d = nn.BCELoss()
|
||||
accelerator.print("✅ | Compiling done!")
|
||||
|
||||
# Optimizers
|
||||
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||
# ---------------------------
|
||||
# Dataset / DataLoader
|
||||
# ---------------------------
|
||||
accelerator.print("📊 | Fetching dataset...")
|
||||
dataset = AudioDataset("./dataset")
|
||||
|
||||
# Scheduler
|
||||
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
|
||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
||||
sampler = DistributedSampler(dataset) if accelerator.num_processes > 1 else None
|
||||
pin_memory = torch.cuda.is_available() and not args.no_pin_memory
|
||||
|
||||
def start_training():
|
||||
train_loader = DataLoader(
|
||||
dataset,
|
||||
sampler=sampler,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=(sampler is None),
|
||||
num_workers=args.num_workers,
|
||||
pin_memory=pin_memory,
|
||||
persistent_workers=pin_memory,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
if not train_loader or not train_loader.batch_size or train_loader.batch_size == 0:
|
||||
accelerator.print("🪹 | There is no data to train with! Exiting...")
|
||||
exit()
|
||||
|
||||
# ========= DISCRIMINATOR PRE-TRAINING =========
|
||||
# discriminator_epochs = 1
|
||||
# for discriminator_epoch in range(discriminator_epochs):
|
||||
loader_batch_size = train_loader.batch_size
|
||||
|
||||
# # ========= TRAINING =========
|
||||
# for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
|
||||
# high_quality_sample = high_quality_clip[0].to(device)
|
||||
# low_quality_sample = low_quality_clip[0].to(device)
|
||||
accelerator.print("✅ | Dataset fetched!")
|
||||
|
||||
# scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
|
||||
# ---------------------------
|
||||
# Losses / Optimizers / Scalers
|
||||
# ---------------------------
|
||||
|
||||
# # ========= LABELS =========
|
||||
# batch_size = high_quality_sample.size(0)
|
||||
# real_labels = torch.ones(batch_size, 1).to(device)
|
||||
# fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||
optimizer_g = optim.AdamW(
|
||||
generator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
|
||||
)
|
||||
optimizer_d = optim.AdamW(
|
||||
discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
|
||||
)
|
||||
|
||||
# # ========= DISCRIMINATOR =========
|
||||
# discriminator.train()
|
||||
# discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
|
||||
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||||
optimizer_g, mode="min", factor=0.5, patience=5
|
||||
)
|
||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||||
optimizer_d, mode="min", factor=0.5, patience=5
|
||||
)
|
||||
|
||||
# torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
|
||||
criterion_g = nn.BCEWithLogitsLoss()
|
||||
criterion_d = nn.MSELoss()
|
||||
|
||||
generator_epochs = 5000
|
||||
for generator_epoch in range(generator_epochs):
|
||||
low_quality_audio = (torch.empty((1)), 1)
|
||||
high_quality_audio = (torch.empty((1)), 1)
|
||||
ai_enhanced_audio = (torch.empty((1)), 1)
|
||||
# ---------------------------
|
||||
# Prepare accelerator
|
||||
# ---------------------------
|
||||
|
||||
times_correct = 0
|
||||
generator, discriminator, optimizer_g, optimizer_d, train_loader = accelerator.prepare(
|
||||
generator, discriminator, optimizer_g, optimizer_d, train_loader
|
||||
)
|
||||
|
||||
# ========= TRAINING =========
|
||||
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
|
||||
# for high_quality_clip, low_quality_clip in train_data_loader:
|
||||
high_quality_sample = (high_quality_clip[0].to(device), high_quality_clip[1])
|
||||
low_quality_sample = (low_quality_clip[0].to(device), low_quality_clip[1])
|
||||
# ---------------------------
|
||||
# Checkpoint helpers
|
||||
# ---------------------------
|
||||
models_dir = "./models"
|
||||
os.makedirs(models_dir, exist_ok=True)
|
||||
|
||||
# ========= LABELS =========
|
||||
batch_size = high_quality_clip[0].size(0)
|
||||
real_labels = torch.ones(batch_size, 1).to(device)
|
||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||
|
||||
# ========= DISCRIMINATOR =========
|
||||
discriminator.train()
|
||||
discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
|
||||
def save_ckpt(path, epoch):
|
||||
accelerator.wait_for_everyone()
|
||||
if accelerator.is_main_process:
|
||||
accelerator.save(
|
||||
{
|
||||
"epoch": epoch,
|
||||
"G": accelerator.unwrap_model(generator).state_dict(),
|
||||
"D": accelerator.unwrap_model(discriminator).state_dict(),
|
||||
"optG": optimizer_g.state_dict(),
|
||||
"optD": optimizer_d.state_dict(),
|
||||
"schedG": scheduler_g.state_dict(),
|
||||
"schedD": scheduler_d.state_dict(),
|
||||
},
|
||||
path,
|
||||
)
|
||||
|
||||
# ========= GENERATOR =========
|
||||
|
||||
start_epoch = 0
|
||||
if args.resume:
|
||||
ckpt_path = os.path.join(models_dir, "last.pt")
|
||||
ckpt = torch.load(ckpt_path)
|
||||
|
||||
accelerator.unwrap_model(generator).load_state_dict(ckpt["G"])
|
||||
accelerator.unwrap_model(discriminator).load_state_dict(ckpt["D"])
|
||||
optimizer_g.load_state_dict(ckpt["optG"])
|
||||
optimizer_d.load_state_dict(ckpt["optD"])
|
||||
scheduler_g.load_state_dict(ckpt["schedG"])
|
||||
scheduler_d.load_state_dict(ckpt["schedD"])
|
||||
|
||||
start_epoch = ckpt.get("epoch", 1)
|
||||
accelerator.print(f"🔁 | Resumed from epoch {start_epoch}!")
|
||||
|
||||
real_buf = torch.full(
|
||||
(loader_batch_size, 1), 1, device=accelerator.device, dtype=torch.float32
|
||||
)
|
||||
fake_buf = torch.zeros(
|
||||
(loader_batch_size, 1), device=accelerator.device, dtype=torch.float32
|
||||
)
|
||||
|
||||
accelerator.print("🏋️ | Started training...")
|
||||
|
||||
try:
|
||||
for epoch in range(start_epoch, args.epochs):
|
||||
generator.train()
|
||||
generator_output = generator_train(low_quality_sample, real_labels)
|
||||
discriminator.train()
|
||||
|
||||
# ========= SAVE LATEST AUDIO =========
|
||||
high_quality_audio = high_quality_clip
|
||||
low_quality_audio = low_quality_clip
|
||||
ai_enhanced_audio = (generator_output, high_quality_clip[1])
|
||||
running_d, running_g, steps = 0.0, 0.0, 0
|
||||
|
||||
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
|
||||
#print(f"Generator metric {metric}!")
|
||||
#scheduler_g.step(metric)
|
||||
for i, (
|
||||
(high_quality, low_quality),
|
||||
(high_sample_rate, low_sample_rate),
|
||||
) in enumerate(tqdm.tqdm(train_loader, desc=f"Epoch {epoch}")):
|
||||
batch_size = high_quality.size(0)
|
||||
|
||||
if generator_epoch % 10 == 0:
|
||||
print(f"Saved epoch {generator_epoch}!")
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
|
||||
real_labels = real_buf[:batch_size].to(accelerator.device)
|
||||
fake_labels = fake_buf[:batch_size].to(accelerator.device)
|
||||
|
||||
torch.save(discriminator.state_dict(), f"models/current-epoch-discriminator.pt")
|
||||
torch.save(generator.state_dict(), f"models/current-epoch-generator.pt")
|
||||
# --- Discriminator ---
|
||||
optimizer_d.zero_grad(set_to_none=True)
|
||||
with accelerator.autocast():
|
||||
d_loss = discriminator_train(
|
||||
high_quality,
|
||||
low_quality,
|
||||
real_labels,
|
||||
fake_labels,
|
||||
discriminator,
|
||||
generator,
|
||||
criterion_d,
|
||||
)
|
||||
|
||||
torch.save(discriminator.state_dict(), "models/epoch-5000-discriminator.pt")
|
||||
torch.save(generator.state_dict(), "models/epoch-5000-generator.pt")
|
||||
print("Training complete!")
|
||||
accelerator.backward(d_loss)
|
||||
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), 1)
|
||||
optimizer_d.step()
|
||||
|
||||
start_training()
|
||||
# --- Generator ---
|
||||
optimizer_g.zero_grad(set_to_none=True)
|
||||
with accelerator.autocast():
|
||||
g_total, g_adv = generator_train(
|
||||
low_quality,
|
||||
high_quality,
|
||||
real_labels,
|
||||
generator,
|
||||
discriminator,
|
||||
criterion_d,
|
||||
)
|
||||
|
||||
accelerator.backward(g_total)
|
||||
torch.nn.utils.clip_grad_norm_(generator.parameters(), 1)
|
||||
optimizer_g.step()
|
||||
|
||||
d_val = accelerator.gather(d_loss.detach()).mean()
|
||||
g_val = accelerator.gather(g_total.detach()).mean()
|
||||
|
||||
if torch.isfinite(d_val):
|
||||
running_d += d_val.item()
|
||||
else:
|
||||
accelerator.print(
|
||||
f"🫥 | NaN in discriminator loss at step {i}, skipping update."
|
||||
)
|
||||
|
||||
if torch.isfinite(g_val):
|
||||
running_g += g_val.item()
|
||||
else:
|
||||
accelerator.print(
|
||||
f"🫥 | NaN in generator loss at step {i}, skipping update."
|
||||
)
|
||||
|
||||
steps += 1
|
||||
|
||||
# epoch averages & schedulers
|
||||
if steps == 0:
|
||||
accelerator.print("🪹 | No steps in epoch (empty dataloader?). Exiting.")
|
||||
break
|
||||
|
||||
mean_d = running_d / steps
|
||||
mean_g = running_g / steps
|
||||
|
||||
scheduler_d.step(mean_d)
|
||||
scheduler_g.step(mean_g)
|
||||
|
||||
save_ckpt(os.path.join(models_dir, "last.pt"), epoch)
|
||||
accelerator.print(f"🤝 | Epoch {epoch} done | D {mean_d:.4f} | G {mean_g:.4f}")
|
||||
|
||||
except Exception:
|
||||
try:
|
||||
save_ckpt(os.path.join(models_dir, "crash_last.pt"), epoch)
|
||||
accelerator.print(f"💾 | Saved crash checkpoint for epoch {epoch}")
|
||||
except Exception as e:
|
||||
accelerator.print("😬 | Failed saving crash checkpoint:", e)
|
||||
raise
|
||||
|
||||
accelerator.print("🏁 | Training finished.")
|
||||
|
87
utils/MultiResolutionSTFTLoss.py
Normal file
87
utils/MultiResolutionSTFTLoss.py
Normal file
@@ -0,0 +1,87 @@
|
||||
from typing import Dict, List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio.transforms as T
|
||||
|
||||
|
||||
class MultiResolutionSTFTLoss(nn.Module):
|
||||
"""
|
||||
Multi-resolution STFT loss.
|
||||
Combines spectral convergence loss and log-magnitude loss
|
||||
across multiple STFT resolutions.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fft_sizes: List[int] = [1024, 2048, 512],
|
||||
hop_sizes: List[int] = [120, 240, 50],
|
||||
win_lengths: List[int] = [600, 1200, 240],
|
||||
eps: float = 1e-7,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.eps = eps
|
||||
self.n_resolutions = len(fft_sizes)
|
||||
|
||||
self.stft_transforms = nn.ModuleList()
|
||||
for n_fft, hop_len, win_len in zip(fft_sizes, hop_sizes, win_lengths):
|
||||
window = torch.hann_window(win_len)
|
||||
stft = T.Spectrogram(
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_len,
|
||||
win_length=win_len,
|
||||
window_fn=lambda _: window,
|
||||
power=None, # Keep complex output
|
||||
center=True,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
)
|
||||
self.stft_transforms.append(stft)
|
||||
|
||||
def forward(
|
||||
self, y_true: torch.Tensor, y_pred: torch.Tensor
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
y_true: (B, T) or (B, 1, T) waveform
|
||||
y_pred: (B, T) or (B, 1, T) waveform
|
||||
"""
|
||||
# Ensure correct shape (B, T)
|
||||
if y_true.dim() == 3 and y_true.size(1) == 1:
|
||||
y_true = y_true.squeeze(1)
|
||||
if y_pred.dim() == 3 and y_pred.size(1) == 1:
|
||||
y_pred = y_pred.squeeze(1)
|
||||
|
||||
sc_loss = 0.0
|
||||
mag_loss = 0.0
|
||||
|
||||
for stft in self.stft_transforms:
|
||||
stft = stft.to(y_pred.device)
|
||||
|
||||
# Complex STFTs: (B, F, T, 2)
|
||||
stft_true = stft(y_true)
|
||||
stft_pred = stft(y_pred)
|
||||
|
||||
# Magnitudes
|
||||
stft_mag_true = torch.abs(stft_true)
|
||||
stft_mag_pred = torch.abs(stft_pred)
|
||||
|
||||
# --- Spectral Convergence Loss ---
|
||||
norm_true = torch.linalg.norm(stft_mag_true, dim=(-2, -1))
|
||||
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, dim=(-2, -1))
|
||||
sc_loss += torch.mean(norm_diff / (norm_true + self.eps))
|
||||
|
||||
# --- Log STFT Magnitude Loss ---
|
||||
mag_loss += F.l1_loss(
|
||||
torch.log(stft_mag_pred + self.eps),
|
||||
torch.log(stft_mag_true + self.eps),
|
||||
)
|
||||
|
||||
# Average across resolutions
|
||||
sc_loss /= self.n_resolutions
|
||||
mag_loss /= self.n_resolutions
|
||||
total_loss = sc_loss + mag_loss
|
||||
|
||||
return {"total": total_loss, "sc": sc_loss, "mag": mag_loss}
|
60
utils/TrainingTools.py
Normal file
60
utils/TrainingTools.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import torch
|
||||
|
||||
# In case if needed again...
|
||||
# from utils.MultiResolutionSTFTLoss import MultiResolutionSTFTLoss
|
||||
#
|
||||
# stft_loss_fn = MultiResolutionSTFTLoss(
|
||||
# fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240]
|
||||
# )
|
||||
|
||||
|
||||
def signal_mae(input_one: torch.Tensor, input_two: torch.Tensor) -> torch.Tensor:
|
||||
absolute_difference = torch.abs(input_one - input_two)
|
||||
return torch.mean(absolute_difference)
|
||||
|
||||
|
||||
def discriminator_train(
|
||||
high_quality,
|
||||
low_quality,
|
||||
high_labels,
|
||||
low_labels,
|
||||
discriminator,
|
||||
generator,
|
||||
criterion,
|
||||
):
|
||||
decision_high = discriminator(high_quality)
|
||||
d_loss_high = criterion(decision_high, high_labels)
|
||||
# print(f"Is this real?: {discriminator_decision_from_real} | {d_loss_real}")
|
||||
|
||||
decision_low = discriminator(low_quality)
|
||||
d_loss_low = criterion(decision_low, low_labels)
|
||||
# print(f"Is this real?: {discriminator_decision_from_fake} | {d_loss_fake}")
|
||||
|
||||
with torch.no_grad():
|
||||
generator_quality = generator(low_quality)
|
||||
decision_gen = discriminator(generator_quality)
|
||||
d_loss_gen = criterion(decision_gen, low_labels)
|
||||
|
||||
noise = torch.rand_like(high_quality) * 0.08
|
||||
decision_noise = discriminator(high_quality + noise)
|
||||
d_loss_noise = criterion(decision_noise, low_labels)
|
||||
|
||||
d_loss = (d_loss_high + d_loss_low + d_loss_gen + d_loss_noise) / 4.0
|
||||
|
||||
return d_loss
|
||||
|
||||
|
||||
def generator_train(
|
||||
low_quality, high_quality, real_labels, generator, discriminator, adv_criterion
|
||||
):
|
||||
generator_output = generator(low_quality)
|
||||
|
||||
discriminator_decision = discriminator(generator_output)
|
||||
adversarial_loss = adv_criterion(discriminator_decision, real_labels)
|
||||
|
||||
# Signal similarity
|
||||
similarity_loss = signal_mae(generator_output, high_quality)
|
||||
|
||||
combined_loss = adversarial_loss + (similarity_loss * 100)
|
||||
|
||||
return combined_loss, adversarial_loss
|
0
utils/__init__.py
Normal file
0
utils/__init__.py
Normal file
Reference in New Issue
Block a user