Compare commits
6 Commits
Author | SHA1 | Date | |
---|---|---|---|
ff38cefdd3 | |||
03fdc050cc | |||
2ded03713d | |||
a135c765da | |||
b1e18443ba | |||
660b41aef8 |
@ -16,3 +16,56 @@ def stretch_tensor(tensor, target_length):
|
||||
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
|
||||
|
||||
return tensor
|
||||
|
||||
def pad_tensor(audio_tensor: torch.Tensor, target_length: int = 128):
|
||||
current_length = audio_tensor.shape[-1]
|
||||
|
||||
if current_length < target_length:
|
||||
padding_needed = target_length - current_length
|
||||
|
||||
padding_tuple = (0, padding_needed)
|
||||
padded_audio_tensor = F.pad(audio_tensor, padding_tuple, mode='constant', value=0)
|
||||
else:
|
||||
padded_audio_tensor = audio_tensor
|
||||
|
||||
return padded_audio_tensor
|
||||
|
||||
def split_audio(audio_tensor: torch.Tensor, chunk_size: int = 128) -> list[torch.Tensor]:
|
||||
if not isinstance(chunk_size, int) or chunk_size <= 0:
|
||||
raise ValueError("chunk_size must be a positive integer.")
|
||||
|
||||
# Handle scalar tensor edge case if necessary
|
||||
if audio_tensor.dim() == 0:
|
||||
return [audio_tensor] if audio_tensor.numel() > 0 else []
|
||||
|
||||
# Identify the dimension to split (usually the last one, representing time/samples)
|
||||
split_dim = -1
|
||||
num_samples = audio_tensor.shape[split_dim]
|
||||
|
||||
if num_samples == 0:
|
||||
return [] # Return empty list if the dimension to split is empty
|
||||
|
||||
# Use torch.split to divide the tensor into chunks
|
||||
# It handles the last chunk being potentially smaller automatically.
|
||||
chunks = list(torch.split(audio_tensor, chunk_size, dim=split_dim))
|
||||
|
||||
return chunks
|
||||
|
||||
def reconstruct_audio(chunks: list[torch.Tensor]) -> torch.Tensor:
|
||||
if not chunks:
|
||||
return torch.empty(0)
|
||||
|
||||
if len(chunks) == 1 and chunks[0].dim() == 0:
|
||||
return chunks[0]
|
||||
|
||||
concat_dim = -1
|
||||
|
||||
try:
|
||||
reconstructed_tensor = torch.cat(chunks, dim=concat_dim)
|
||||
except RuntimeError as e:
|
||||
raise RuntimeError(
|
||||
f"Failed to concatenate audio chunks. Ensure chunks have compatible shapes "
|
||||
f"for concatenation along dimension {concat_dim}. Original error: {e}"
|
||||
)
|
||||
|
||||
return reconstructed_tensor
|
||||
|
60
app.py
Normal file
60
app.py
Normal file
@ -0,0 +1,60 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
import tqdm
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
|
||||
import AudioUtils
|
||||
from generator import SISUGenerator
|
||||
|
||||
|
||||
# Init script argument parser
|
||||
parser = argparse.ArgumentParser(description="Training script")
|
||||
parser.add_argument("--device", type=str, default="cpu", help="Select device")
|
||||
parser.add_argument("--model", type=str, help="Model to use for upscaling")
|
||||
parser.add_argument("--clip_length", type=int, default=1024, help="Internal clip length, leave unspecified if unsure")
|
||||
parser.add_argument("-i", "--input", type=str, help="Input audio file")
|
||||
parser.add_argument("-o", "--output", type=str, help="Output audio file")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
|
||||
print(f"Using device: {device}")
|
||||
|
||||
generator = SISUGenerator()
|
||||
|
||||
models_dir = args.model
|
||||
clip_length = args.clip_length
|
||||
input_audio = args.input
|
||||
output_audio = args.output
|
||||
|
||||
if models_dir:
|
||||
generator.load_state_dict(torch.load(f"{models_dir}", map_location=device, weights_only=True))
|
||||
else:
|
||||
print(f"Generator model (--model) isn't specified. Do you have the trained model? If not you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)")
|
||||
|
||||
generator = generator.to(device)
|
||||
|
||||
def start():
|
||||
# To Mono!
|
||||
audio, original_sample_rate = torchaudio.load(input_audio, normalize=True)
|
||||
audio = AudioUtils.stereo_tensor_to_mono(audio)
|
||||
|
||||
splitted_audio = AudioUtils.split_audio(audio, clip_length)
|
||||
splitted_audio_on_device = [t.to(device) for t in splitted_audio]
|
||||
processed_audio = []
|
||||
|
||||
for clip in tqdm.tqdm(splitted_audio_on_device, desc="Processing..."):
|
||||
processed_audio.append(generator(clip))
|
||||
|
||||
reconstructed_audio = AudioUtils.reconstruct_audio(processed_audio)
|
||||
print(f"Saving {output_audio}!")
|
||||
torchaudio.save(output_audio, reconstructed_audio.cpu().detach(), original_sample_rate)
|
||||
|
||||
start()
|
65
data.py
65
data.py
@ -5,49 +5,42 @@ import torchaudio
|
||||
import os
|
||||
import random
|
||||
import torchaudio.transforms as T
|
||||
import tqdm
|
||||
import AudioUtils
|
||||
|
||||
class AudioDataset(Dataset):
|
||||
audio_sample_rates = [11025]
|
||||
MAX_LENGTH = 44100 # Define your desired maximum length here
|
||||
|
||||
def __init__(self, input_dir, device):
|
||||
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
|
||||
def __init__(self, input_dir, device, clip_length = 1024):
|
||||
self.device = device
|
||||
input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav') or f.endswith('.mp3') or f.endswith('.flac')]
|
||||
|
||||
data = []
|
||||
for audio_clip in tqdm.tqdm(input_files, desc=f"Processing {len(input_files)} audio file(s)"):
|
||||
audio, original_sample_rate = torchaudio.load(audio_clip, normalize=True)
|
||||
audio = AudioUtils.stereo_tensor_to_mono(audio)
|
||||
|
||||
# Generate low-quality audio with random downsampling
|
||||
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
||||
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
|
||||
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
||||
|
||||
low_audio = resample_transform_low(audio)
|
||||
low_audio = resample_transform_high(low_audio)
|
||||
|
||||
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length)
|
||||
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(splitted_high_quality_audio[-1], clip_length)
|
||||
|
||||
splitted_low_quality_audio = AudioUtils.split_audio(low_audio, clip_length)
|
||||
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(splitted_low_quality_audio[-1], clip_length)
|
||||
|
||||
for high_quality_sample, low_quality_sample in zip(splitted_high_quality_audio, splitted_low_quality_audio):
|
||||
data.append(((high_quality_sample, low_quality_sample), (original_sample_rate, mangled_sample_rate)))
|
||||
|
||||
self.audio_data = data
|
||||
|
||||
def __len__(self):
|
||||
return len(self.input_files)
|
||||
return len(self.audio_data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
# Load high-quality audio
|
||||
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
|
||||
|
||||
# Generate low-quality audio with random downsampling
|
||||
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
||||
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
|
||||
low_quality_audio = resample_transform_low(high_quality_audio)
|
||||
|
||||
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
||||
low_quality_audio = resample_transform_high(low_quality_audio)
|
||||
|
||||
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
|
||||
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio)
|
||||
|
||||
# Pad or truncate high-quality audio
|
||||
if high_quality_audio.shape[1] < self.MAX_LENGTH:
|
||||
padding = self.MAX_LENGTH - high_quality_audio.shape[1]
|
||||
high_quality_audio = F.pad(high_quality_audio, (0, padding))
|
||||
elif high_quality_audio.shape[1] > self.MAX_LENGTH:
|
||||
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH]
|
||||
|
||||
# Pad or truncate low-quality audio
|
||||
if low_quality_audio.shape[1] < self.MAX_LENGTH:
|
||||
padding = self.MAX_LENGTH - low_quality_audio.shape[1]
|
||||
low_quality_audio = F.pad(low_quality_audio, (0, padding))
|
||||
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
|
||||
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
|
||||
|
||||
high_quality_audio = high_quality_audio.to(self.device)
|
||||
low_quality_audio = low_quality_audio.to(self.device)
|
||||
|
||||
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)
|
||||
return self.audio_data[idx]
|
||||
|
@ -2,20 +2,22 @@ import json
|
||||
|
||||
filepath = "my_data.json"
|
||||
|
||||
def write_data(filepath, data):
|
||||
def write_data(filepath, data, debug=False):
|
||||
try:
|
||||
with open(filepath, 'w') as f:
|
||||
json.dump(data, f, indent=4) # Use indent for pretty formatting
|
||||
print(f"Data written to '{filepath}'")
|
||||
if debug:
|
||||
print(f"Data written to '{filepath}'")
|
||||
except Exception as e:
|
||||
print(f"Error writing to file: {e}")
|
||||
|
||||
|
||||
def read_data(filepath):
|
||||
def read_data(filepath, debug=False):
|
||||
try:
|
||||
with open(filepath, 'r') as f:
|
||||
data = json.load(f)
|
||||
print(f"Data read from '{filepath}'")
|
||||
if debug:
|
||||
print(f"Data read from '{filepath}'")
|
||||
return data
|
||||
except FileNotFoundError:
|
||||
print(f"File not found: {filepath}")
|
||||
|
102
training.py
102
training.py
@ -43,40 +43,51 @@ print(f"Using device: {device}")
|
||||
|
||||
# Parameters
|
||||
sample_rate = 44100
|
||||
n_fft = 2048
|
||||
hop_length = 256
|
||||
n_fft = 1024
|
||||
win_length = n_fft
|
||||
n_mels = 128
|
||||
n_mfcc = 20 # If using MFCC
|
||||
hop_length = n_fft // 4
|
||||
n_mels = 40
|
||||
n_mfcc = 13
|
||||
|
||||
mfcc_transform = T.MFCC(
|
||||
sample_rate,
|
||||
n_mfcc,
|
||||
melkwargs = {'n_fft': n_fft, 'hop_length': hop_length}
|
||||
sample_rate=sample_rate,
|
||||
n_mfcc=n_mfcc,
|
||||
melkwargs={
|
||||
'n_fft': n_fft,
|
||||
'hop_length': hop_length,
|
||||
'win_length': win_length,
|
||||
'n_mels': n_mels,
|
||||
'power': 1.0,
|
||||
}
|
||||
).to(device)
|
||||
|
||||
mel_transform = T.MelSpectrogram(
|
||||
sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length,
|
||||
win_length=win_length, n_mels=n_mels, power=1.0 # Magnitude Mel
|
||||
sample_rate=sample_rate,
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
win_length=win_length,
|
||||
n_mels=n_mels,
|
||||
power=1.0 # Magnitude Mel
|
||||
).to(device)
|
||||
|
||||
stft_transform = T.Spectrogram(
|
||||
n_fft=n_fft, win_length=win_length, hop_length=hop_length
|
||||
n_fft=n_fft,
|
||||
win_length=win_length,
|
||||
hop_length=hop_length
|
||||
).to(device)
|
||||
|
||||
debug = args.debug
|
||||
|
||||
# Initialize dataset and dataloader
|
||||
dataset_dir = './dataset/good'
|
||||
dataset = AudioDataset(dataset_dir, device)
|
||||
models_dir = "models"
|
||||
models_dir = "./models"
|
||||
os.makedirs(models_dir, exist_ok=True)
|
||||
audio_output_dir = "output"
|
||||
audio_output_dir = "./output"
|
||||
os.makedirs(audio_output_dir, exist_ok=True)
|
||||
|
||||
# ========= SINGLE =========
|
||||
|
||||
train_data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
|
||||
train_data_loader = DataLoader(dataset, batch_size=2048, shuffle=True, num_workers=24)
|
||||
|
||||
|
||||
# ========= MODELS =========
|
||||
@ -85,17 +96,18 @@ generator = SISUGenerator()
|
||||
discriminator = SISUDiscriminator()
|
||||
|
||||
epoch: int = args.epoch
|
||||
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
|
||||
|
||||
if args.continue_training:
|
||||
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
|
||||
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
|
||||
epoch = epoch_from_file["epoch"] + 1
|
||||
else:
|
||||
if args.generator is not None:
|
||||
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
|
||||
if args.discriminator is not None:
|
||||
elif args.discriminator is not None:
|
||||
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
|
||||
else:
|
||||
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
|
||||
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_discriminator.pt", map_location=device, weights_only=True))
|
||||
|
||||
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
|
||||
epoch = epoch_from_file["epoch"] + 1
|
||||
|
||||
generator = generator.to(device)
|
||||
discriminator = discriminator.to(device)
|
||||
@ -115,28 +127,35 @@ scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min'
|
||||
def start_training():
|
||||
generator_epochs = 5000
|
||||
for generator_epoch in range(generator_epochs):
|
||||
low_quality_audio = (torch.empty((1)), 1)
|
||||
high_quality_audio = (torch.empty((1)), 1)
|
||||
ai_enhanced_audio = (torch.empty((1)), 1)
|
||||
high_quality_audio = ([torch.empty((1))], 1)
|
||||
low_quality_audio = ([torch.empty((1))], 1)
|
||||
ai_enhanced_audio = ([torch.empty((1))], 1)
|
||||
|
||||
times_correct = 0
|
||||
|
||||
# ========= TRAINING =========
|
||||
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
|
||||
# for high_quality_clip, low_quality_clip in train_data_loader:
|
||||
high_quality_sample = (high_quality_clip[0], high_quality_clip[1])
|
||||
low_quality_sample = (low_quality_clip[0], low_quality_clip[1])
|
||||
for training_data in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
|
||||
## Data structure:
|
||||
# [[[float..., float..., float...], [float..., float..., float...]], [original_sample_rate, mangled_sample_rate]]
|
||||
|
||||
# ========= LABELS =========
|
||||
batch_size = high_quality_clip[0].size(0)
|
||||
good_quality_data = training_data[0][0].to(device)
|
||||
bad_quality_data = training_data[0][1].to(device)
|
||||
original_sample_rate = training_data[1][0]
|
||||
mangled_sample_rate = training_data[1][1]
|
||||
|
||||
batch_size = good_quality_data.size(0)
|
||||
real_labels = torch.ones(batch_size, 1).to(device)
|
||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||
|
||||
high_quality_audio = (good_quality_data, original_sample_rate)
|
||||
low_quality_audio = (bad_quality_data, mangled_sample_rate)
|
||||
|
||||
# ========= DISCRIMINATOR =========
|
||||
discriminator.train()
|
||||
d_loss = discriminator_train(
|
||||
high_quality_sample,
|
||||
low_quality_sample,
|
||||
good_quality_data,
|
||||
bad_quality_data,
|
||||
real_labels,
|
||||
fake_labels,
|
||||
discriminator,
|
||||
@ -148,8 +167,8 @@ def start_training():
|
||||
# ========= GENERATOR =========
|
||||
generator.train()
|
||||
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
|
||||
low_quality_sample,
|
||||
high_quality_sample,
|
||||
bad_quality_data,
|
||||
good_quality_data,
|
||||
real_labels,
|
||||
generator,
|
||||
discriminator,
|
||||
@ -167,23 +186,14 @@ def start_training():
|
||||
scheduler_g.step(adversarial_loss.detach())
|
||||
|
||||
# ========= SAVE LATEST AUDIO =========
|
||||
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0])
|
||||
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0])
|
||||
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0])
|
||||
high_quality_audio = (good_quality_data, original_sample_rate)
|
||||
low_quality_audio = (bad_quality_data, original_sample_rate)
|
||||
ai_enhanced_audio = (generator_output, original_sample_rate)
|
||||
|
||||
new_epoch = generator_epoch+epoch
|
||||
|
||||
if generator_epoch % 25 == 0:
|
||||
print(f"Saved epoch {new_epoch}!")
|
||||
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
||||
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
|
||||
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
|
||||
|
||||
#if debug:
|
||||
# print(generator.state_dict().keys())
|
||||
# print(discriminator.state_dict().keys())
|
||||
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
|
||||
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
|
||||
|
||||
new_epoch = generator_epoch+epoch
|
||||
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
|
||||
|
||||
|
||||
|
@ -20,12 +20,10 @@ def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tenso
|
||||
mel_spec_true = mel_transform(y_true)
|
||||
mel_spec_pred = mel_transform(y_pred)
|
||||
|
||||
# Ensure same time dimension length (due to potential framing differences)
|
||||
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
|
||||
mel_spec_true = mel_spec_true[..., :min_len]
|
||||
mel_spec_pred = mel_spec_pred[..., :min_len]
|
||||
|
||||
# L1 Loss (Mean Absolute Error)
|
||||
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
|
||||
return loss
|
||||
|
||||
@ -69,11 +67,11 @@ def discriminator_train(high_quality, low_quality, real_labels, fake_labels, dis
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Forward pass for real samples
|
||||
discriminator_decision_from_real = discriminator(high_quality[0])
|
||||
discriminator_decision_from_real = discriminator(high_quality)
|
||||
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
||||
|
||||
with torch.no_grad():
|
||||
generator_output = generator(low_quality[0])
|
||||
generator_output = generator(low_quality)
|
||||
discriminator_decision_from_fake = discriminator(generator_output)
|
||||
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
|
||||
|
||||
@ -105,7 +103,7 @@ def generator_train(
|
||||
):
|
||||
g_optimizer.zero_grad()
|
||||
|
||||
generator_output = generator(low_quality[0])
|
||||
generator_output = generator(low_quality)
|
||||
|
||||
discriminator_decision = discriminator(generator_output)
|
||||
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
|
||||
@ -116,15 +114,15 @@ def generator_train(
|
||||
|
||||
# Calculate Mel L1 Loss if weight is positive
|
||||
if lambda_mel_l1 > 0:
|
||||
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output)
|
||||
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality, generator_output)
|
||||
|
||||
# Calculate Log STFT L1 Loss if weight is positive
|
||||
if lambda_log_stft > 0:
|
||||
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality[0], generator_output)
|
||||
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality, generator_output)
|
||||
|
||||
# Calculate MFCC Loss if weight is positive
|
||||
if lambda_mfcc > 0:
|
||||
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality[0], generator_output)
|
||||
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality, generator_output)
|
||||
|
||||
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
|
||||
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
|
||||
|
Reference in New Issue
Block a user