✨ | Made training bit... spicier.
This commit is contained in:
74
app.py
74
app.py
@@ -1,33 +1,49 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
import tqdm
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
import torchcodec
|
||||
import tqdm
|
||||
|
||||
import AudioUtils
|
||||
from generator import SISUGenerator
|
||||
|
||||
|
||||
# Init script argument parser
|
||||
parser = argparse.ArgumentParser(description="Training script")
|
||||
parser.add_argument("--device", type=str, default="cpu", help="Select device")
|
||||
parser.add_argument("--device", type=str, default="cpu", help="Select device")
|
||||
parser.add_argument("--model", type=str, help="Model to use for upscaling")
|
||||
parser.add_argument("--clip_length", type=int, default=1024, help="Internal clip length, leave unspecified if unsure")
|
||||
parser.add_argument(
|
||||
"--clip_length",
|
||||
type=int,
|
||||
default=16384,
|
||||
help="Internal clip length, leave unspecified if unsure",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sample_rate", type=int, default=44100, help="Output clip sample rate"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bitrate",
|
||||
type=int,
|
||||
default=192000,
|
||||
help="Output clip bitrate",
|
||||
)
|
||||
parser.add_argument("-i", "--input", type=str, help="Input audio file")
|
||||
parser.add_argument("-o", "--output", type=str, help="Output audio file")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.sample_rate < 8000:
|
||||
print(
|
||||
"Sample rate cannot be lower than 8000! (44100 is recommended for base models)"
|
||||
)
|
||||
exit()
|
||||
|
||||
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
|
||||
print(f"Using device: {device}")
|
||||
|
||||
generator = SISUGenerator()
|
||||
generator = SISUGenerator().to(device)
|
||||
|
||||
generator = torch.compile(generator)
|
||||
|
||||
models_dir = args.model
|
||||
clip_length = args.clip_length
|
||||
@@ -35,17 +51,30 @@ input_audio = args.input
|
||||
output_audio = args.output
|
||||
|
||||
if models_dir:
|
||||
generator.load_state_dict(torch.load(f"{models_dir}", map_location=device, weights_only=True))
|
||||
ckpt = torch.load(models_dir, map_location=device)
|
||||
generator.load_state_dict(ckpt["G"])
|
||||
else:
|
||||
print(f"Generator model (--model) isn't specified. Do you have the trained model? If not you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)")
|
||||
print(
|
||||
"Generator model (--model) isn't specified. Do you have the trained model? If not, you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)"
|
||||
)
|
||||
|
||||
generator = generator.to(device)
|
||||
|
||||
def start():
|
||||
# To Mono!
|
||||
audio, original_sample_rate = torchaudio.load(input_audio, normalize=True)
|
||||
decoder = torchcodec.decoders.AudioDecoder(input_audio)
|
||||
|
||||
decoded_samples = decoder.get_all_samples()
|
||||
audio = decoded_samples.data
|
||||
original_sample_rate = decoded_samples.sample_rate
|
||||
|
||||
audio = AudioUtils.stereo_tensor_to_mono(audio)
|
||||
|
||||
resample_transform = torchaudio.transforms.Resample(
|
||||
original_sample_rate, args.sample_rate
|
||||
)
|
||||
|
||||
audio = resample_transform(audio)
|
||||
|
||||
splitted_audio = AudioUtils.split_audio(audio, clip_length)
|
||||
splitted_audio_on_device = [t.to(device) for t in splitted_audio]
|
||||
processed_audio = []
|
||||
@@ -55,6 +84,13 @@ def start():
|
||||
|
||||
reconstructed_audio = AudioUtils.reconstruct_audio(processed_audio)
|
||||
print(f"Saving {output_audio}!")
|
||||
torchaudio.save(output_audio, reconstructed_audio.cpu().detach(), original_sample_rate)
|
||||
torchaudio.save_with_torchcodec(
|
||||
uri=output_audio,
|
||||
src=reconstructed_audio,
|
||||
sample_rate=args.sample_rate,
|
||||
channels_first=True,
|
||||
compression=args.bitrate,
|
||||
)
|
||||
|
||||
|
||||
start()
|
||||
|
59
data.py
59
data.py
@@ -1,41 +1,68 @@
|
||||
from torch.utils.data import Dataset
|
||||
import torch.nn.functional as F
|
||||
import torch
|
||||
import torchaudio
|
||||
import os
|
||||
import random
|
||||
import torchaudio.transforms as T
|
||||
|
||||
import torchaudio
|
||||
import torchcodec.decoders as decoders
|
||||
import tqdm
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
import AudioUtils
|
||||
|
||||
|
||||
class AudioDataset(Dataset):
|
||||
audio_sample_rates = [11025]
|
||||
|
||||
def __init__(self, input_dir, device, clip_length = 1024):
|
||||
self.device = device
|
||||
input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav') or f.endswith('.mp3') or f.endswith('.flac')]
|
||||
def __init__(self, input_dir, clip_length=16384):
|
||||
input_files = [
|
||||
os.path.join(root, f)
|
||||
for root, _, files in os.walk(input_dir)
|
||||
for f in files
|
||||
if f.endswith(".wav") or f.endswith(".mp3") or f.endswith(".flac")
|
||||
]
|
||||
|
||||
data = []
|
||||
for audio_clip in tqdm.tqdm(input_files, desc=f"Processing {len(input_files)} audio file(s)"):
|
||||
audio, original_sample_rate = torchaudio.load(audio_clip, normalize=True)
|
||||
for audio_clip in tqdm.tqdm(
|
||||
input_files, desc=f"Processing {len(input_files)} audio file(s)"
|
||||
):
|
||||
decoder = decoders.AudioDecoder(audio_clip)
|
||||
|
||||
decoded_samples = decoder.get_all_samples()
|
||||
audio = decoded_samples.data
|
||||
original_sample_rate = decoded_samples.sample_rate
|
||||
|
||||
audio = AudioUtils.stereo_tensor_to_mono(audio)
|
||||
|
||||
# Generate low-quality audio with random downsampling
|
||||
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
||||
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
|
||||
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
||||
resample_transform_low = torchaudio.transforms.Resample(
|
||||
original_sample_rate, mangled_sample_rate
|
||||
)
|
||||
resample_transform_high = torchaudio.transforms.Resample(
|
||||
mangled_sample_rate, original_sample_rate
|
||||
)
|
||||
|
||||
low_audio = resample_transform_low(audio)
|
||||
low_audio = resample_transform_high(low_audio)
|
||||
|
||||
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length)
|
||||
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(splitted_high_quality_audio[-1], clip_length)
|
||||
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(
|
||||
splitted_high_quality_audio[-1], clip_length
|
||||
)
|
||||
|
||||
splitted_low_quality_audio = AudioUtils.split_audio(low_audio, clip_length)
|
||||
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(splitted_low_quality_audio[-1], clip_length)
|
||||
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(
|
||||
splitted_low_quality_audio[-1], clip_length
|
||||
)
|
||||
|
||||
for high_quality_sample, low_quality_sample in zip(splitted_high_quality_audio, splitted_low_quality_audio):
|
||||
data.append(((high_quality_sample, low_quality_sample), (original_sample_rate, mangled_sample_rate)))
|
||||
for high_quality_sample, low_quality_sample in zip(
|
||||
splitted_high_quality_audio, splitted_low_quality_audio
|
||||
):
|
||||
data.append(
|
||||
(
|
||||
(high_quality_sample, low_quality_sample),
|
||||
(original_sample_rate, mangled_sample_rate),
|
||||
)
|
||||
)
|
||||
|
||||
self.audio_data = data
|
||||
|
||||
|
@@ -1,8 +1,16 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.utils as utils
|
||||
|
||||
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True):
|
||||
|
||||
def discriminator_block(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
):
|
||||
padding = (kernel_size // 2) * dilation
|
||||
conv_layer = nn.Conv1d(
|
||||
in_channels,
|
||||
@@ -10,7 +18,7 @@ def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dila
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
dilation=dilation,
|
||||
padding=padding
|
||||
padding=padding,
|
||||
)
|
||||
|
||||
if spectral_norm:
|
||||
@@ -24,6 +32,7 @@ def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dila
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super(AttentionBlock, self).__init__()
|
||||
@@ -31,27 +40,86 @@ class AttentionBlock(nn.Module):
|
||||
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||
nn.Sigmoid()
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
attention_weights = self.attention(x)
|
||||
return x * attention_weights
|
||||
|
||||
|
||||
class SISUDiscriminator(nn.Module):
|
||||
def __init__(self, base_channels=16):
|
||||
super(SISUDiscriminator, self).__init__()
|
||||
layers = base_channels
|
||||
self.model = nn.Sequential(
|
||||
discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False),
|
||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(
|
||||
1,
|
||||
layers,
|
||||
kernel_size=7,
|
||||
stride=1,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=False,
|
||||
),
|
||||
discriminator_block(
|
||||
layers,
|
||||
layers * 2,
|
||||
kernel_size=5,
|
||||
stride=2,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
discriminator_block(
|
||||
layers * 2,
|
||||
layers * 4,
|
||||
kernel_size=5,
|
||||
stride=1,
|
||||
dilation=2,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
AttentionBlock(layers * 4),
|
||||
discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False)
|
||||
discriminator_block(
|
||||
layers * 4,
|
||||
layers * 8,
|
||||
kernel_size=5,
|
||||
stride=1,
|
||||
dilation=4,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
discriminator_block(
|
||||
layers * 8,
|
||||
layers * 4,
|
||||
kernel_size=5,
|
||||
stride=2,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
discriminator_block(
|
||||
layers * 4,
|
||||
layers * 2,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
discriminator_block(
|
||||
layers * 2,
|
||||
layers,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
discriminator_block(
|
||||
layers,
|
||||
1,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
spectral_norm=False,
|
||||
use_instance_norm=False,
|
||||
),
|
||||
)
|
||||
|
||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||
|
12
generator.py
12
generator.py
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv1d(
|
||||
@@ -8,29 +8,32 @@ def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
||||
out_channels,
|
||||
kernel_size=kernel_size,
|
||||
dilation=dilation,
|
||||
padding=(kernel_size // 2) * dilation
|
||||
padding=(kernel_size // 2) * dilation,
|
||||
),
|
||||
nn.InstanceNorm1d(out_channels),
|
||||
nn.PReLU()
|
||||
nn.PReLU(),
|
||||
)
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
Simple Channel Attention Block. Learns to weight channels based on their importance.
|
||||
"""
|
||||
|
||||
def __init__(self, channels):
|
||||
super(AttentionBlock, self).__init__()
|
||||
self.attention = nn.Sequential(
|
||||
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||
nn.Sigmoid()
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
attention_weights = self.attention(x)
|
||||
return x * attention_weights
|
||||
|
||||
|
||||
class ResidualInResidualBlock(nn.Module):
|
||||
def __init__(self, channels, num_convs=3):
|
||||
super(ResidualInResidualBlock, self).__init__()
|
||||
@@ -47,6 +50,7 @@ class ResidualInResidualBlock(nn.Module):
|
||||
x = self.attention(x)
|
||||
return x + residual
|
||||
|
||||
|
||||
class SISUGenerator(nn.Module):
|
||||
def __init__(self, channels=16, num_rirb=4, alpha=1.0):
|
||||
super(SISUGenerator, self).__init__()
|
||||
|
387
training.py
387
training.py
@@ -1,65 +1,74 @@
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
import torchaudio.transforms as T
|
||||
import tqdm
|
||||
|
||||
import argparse
|
||||
|
||||
import math
|
||||
|
||||
import os
|
||||
|
||||
from torch.utils.data import random_split
|
||||
from torch.amp import GradScaler, autocast
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import AudioUtils
|
||||
import training_utils
|
||||
from data import AudioDataset
|
||||
from generator import SISUGenerator
|
||||
from discriminator import SISUDiscriminator
|
||||
|
||||
from generator import SISUGenerator
|
||||
from training_utils import discriminator_train, generator_train
|
||||
import file_utils as Data
|
||||
|
||||
import torchaudio.transforms as T
|
||||
|
||||
# Init script argument parser
|
||||
parser = argparse.ArgumentParser(description="Training script")
|
||||
parser.add_argument("--generator", type=str, default=None,
|
||||
help="Path to the generator model file")
|
||||
parser.add_argument("--discriminator", type=str, default=None,
|
||||
help="Path to the discriminator model file")
|
||||
parser.add_argument("--device", type=str, default="cpu", help="Select device")
|
||||
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
|
||||
parser.add_argument("--debug", action="store_true", help="Print debug logs")
|
||||
parser.add_argument("--continue_training", action="store_true", help="Continue training using temp_generator and temp_discriminator models")
|
||||
|
||||
# ---------------------------
|
||||
# Argument parsing
|
||||
# ---------------------------
|
||||
parser = argparse.ArgumentParser(description="Training script (safer defaults)")
|
||||
parser.add_argument("--resume", action="store_true", help="Resume training")
|
||||
parser.add_argument(
|
||||
"--device", type=str, default="cuda", help="Device (cuda, cpu, mps)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs", type=int, default=5000, help="Number of training epochs"
|
||||
)
|
||||
parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
|
||||
parser.add_argument("--num_workers", type=int, default=2, help="DataLoader num_workers")
|
||||
parser.add_argument("--debug", action="store_true", help="Print debug logs")
|
||||
parser.add_argument(
|
||||
"--no_pin_memory", action="store_true", help="Disable pin_memory even on CUDA"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
|
||||
# ---------------------------
|
||||
# Device setup
|
||||
# ---------------------------
|
||||
# Use requested device only if available
|
||||
device = torch.device(
|
||||
args.device if (args.device != "cuda" or torch.cuda.is_available()) else "cpu"
|
||||
)
|
||||
print(f"Using device: {device}")
|
||||
# sensible performance flags
|
||||
if device.type == "cuda":
|
||||
torch.backends.cudnn.benchmark = True
|
||||
# optional: torch.set_float32_matmul_precision("high")
|
||||
debug = args.debug
|
||||
|
||||
# Parameters
|
||||
# ---------------------------
|
||||
# Audio transforms
|
||||
# ---------------------------
|
||||
sample_rate = 44100
|
||||
n_fft = 1024
|
||||
win_length = n_fft
|
||||
hop_length = n_fft // 4
|
||||
n_mels = 40
|
||||
n_mfcc = 13
|
||||
n_mels = 96
|
||||
# n_mfcc = 13
|
||||
|
||||
mfcc_transform = T.MFCC(
|
||||
sample_rate=sample_rate,
|
||||
n_mfcc=n_mfcc,
|
||||
melkwargs={
|
||||
'n_fft': n_fft,
|
||||
'hop_length': hop_length,
|
||||
'win_length': win_length,
|
||||
'n_mels': n_mels,
|
||||
'power': 1.0,
|
||||
}
|
||||
).to(device)
|
||||
# mfcc_transform = T.MFCC(
|
||||
# sample_rate=sample_rate,
|
||||
# n_mfcc=n_mfcc,
|
||||
# melkwargs=dict(
|
||||
# n_fft=n_fft,
|
||||
# hop_length=hop_length,
|
||||
# win_length=win_length,
|
||||
# n_mels=n_mels,
|
||||
# power=1.0,
|
||||
# ),
|
||||
# ).to(device)
|
||||
|
||||
mel_transform = T.MelSpectrogram(
|
||||
sample_rate=sample_rate,
|
||||
@@ -67,138 +76,198 @@ mel_transform = T.MelSpectrogram(
|
||||
hop_length=hop_length,
|
||||
win_length=win_length,
|
||||
n_mels=n_mels,
|
||||
power=1.0 # Magnitude Mel
|
||||
power=1.0,
|
||||
).to(device)
|
||||
|
||||
stft_transform = T.Spectrogram(
|
||||
n_fft=n_fft,
|
||||
win_length=win_length,
|
||||
hop_length=hop_length
|
||||
n_fft=n_fft, win_length=win_length, hop_length=hop_length
|
||||
).to(device)
|
||||
debug = args.debug
|
||||
|
||||
# Initialize dataset and dataloader
|
||||
dataset_dir = './dataset/good'
|
||||
dataset = AudioDataset(dataset_dir, device)
|
||||
models_dir = "./models"
|
||||
os.makedirs(models_dir, exist_ok=True)
|
||||
audio_output_dir = "./output"
|
||||
os.makedirs(audio_output_dir, exist_ok=True)
|
||||
# training_utils.init(mel_transform, stft_transform, mfcc_transform)
|
||||
training_utils.init(mel_transform, stft_transform)
|
||||
|
||||
# ========= SINGLE =========
|
||||
# ---------------------------
|
||||
# Dataset / DataLoader
|
||||
# ---------------------------
|
||||
dataset_dir = "./dataset/good"
|
||||
dataset = AudioDataset(dataset_dir)
|
||||
|
||||
train_data_loader = DataLoader(dataset, batch_size=2048, shuffle=True, num_workers=24)
|
||||
train_loader = DataLoader(
|
||||
dataset,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=True,
|
||||
num_workers=args.num_workers,
|
||||
pin_memory=True,
|
||||
persistent_workers=True,
|
||||
)
|
||||
|
||||
# ---------------------------
|
||||
# Models
|
||||
# ---------------------------
|
||||
generator = SISUGenerator().to(device)
|
||||
discriminator = SISUDiscriminator().to(device)
|
||||
|
||||
# ========= MODELS =========
|
||||
generator = torch.compile(generator)
|
||||
discriminator = torch.compile(discriminator)
|
||||
|
||||
generator = SISUGenerator()
|
||||
discriminator = SISUDiscriminator()
|
||||
|
||||
epoch: int = args.epoch
|
||||
|
||||
if args.continue_training:
|
||||
if args.generator is not None:
|
||||
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
|
||||
elif args.discriminator is not None:
|
||||
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
|
||||
else:
|
||||
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
|
||||
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_discriminator.pt", map_location=device, weights_only=True))
|
||||
|
||||
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
|
||||
epoch = epoch_from_file["epoch"] + 1
|
||||
|
||||
generator = generator.to(device)
|
||||
discriminator = discriminator.to(device)
|
||||
|
||||
# Loss
|
||||
# ---------------------------
|
||||
# Losses / Optimizers / Scalers
|
||||
# ---------------------------
|
||||
criterion_g = nn.BCEWithLogitsLoss()
|
||||
criterion_d = nn.BCEWithLogitsLoss()
|
||||
|
||||
# Optimizers
|
||||
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||
optimizer_g = optim.AdamW(
|
||||
generator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
|
||||
)
|
||||
optimizer_d = optim.AdamW(
|
||||
discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
|
||||
)
|
||||
|
||||
# Scheduler
|
||||
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
|
||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
||||
# Use modern GradScaler signature; choose device_type based on runtime device.
|
||||
scaler = GradScaler(device=device)
|
||||
|
||||
def start_training():
|
||||
generator_epochs = 5000
|
||||
for generator_epoch in range(generator_epochs):
|
||||
high_quality_audio = ([torch.empty((1))], 1)
|
||||
low_quality_audio = ([torch.empty((1))], 1)
|
||||
ai_enhanced_audio = ([torch.empty((1))], 1)
|
||||
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||||
optimizer_g, mode="min", factor=0.5, patience=5
|
||||
)
|
||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||||
optimizer_d, mode="min", factor=0.5, patience=5
|
||||
)
|
||||
|
||||
times_correct = 0
|
||||
|
||||
# ========= TRAINING =========
|
||||
for training_data in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
|
||||
## Data structure:
|
||||
# [[[float..., float..., float...], [float..., float..., float...]], [original_sample_rate, mangled_sample_rate]]
|
||||
|
||||
# ========= LABELS =========
|
||||
good_quality_data = training_data[0][0].to(device)
|
||||
bad_quality_data = training_data[0][1].to(device)
|
||||
original_sample_rate = training_data[1][0]
|
||||
mangled_sample_rate = training_data[1][1]
|
||||
|
||||
batch_size = good_quality_data.size(0)
|
||||
real_labels = torch.ones(batch_size, 1).to(device)
|
||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||
|
||||
high_quality_audio = (good_quality_data, original_sample_rate)
|
||||
low_quality_audio = (bad_quality_data, mangled_sample_rate)
|
||||
|
||||
# ========= DISCRIMINATOR =========
|
||||
discriminator.train()
|
||||
d_loss = discriminator_train(
|
||||
good_quality_data,
|
||||
bad_quality_data,
|
||||
real_labels,
|
||||
fake_labels,
|
||||
discriminator,
|
||||
generator,
|
||||
criterion_d,
|
||||
optimizer_d
|
||||
)
|
||||
|
||||
# ========= GENERATOR =========
|
||||
generator.train()
|
||||
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
|
||||
bad_quality_data,
|
||||
good_quality_data,
|
||||
real_labels,
|
||||
generator,
|
||||
discriminator,
|
||||
criterion_d,
|
||||
optimizer_g,
|
||||
device,
|
||||
mel_transform,
|
||||
stft_transform,
|
||||
mfcc_transform
|
||||
)
|
||||
|
||||
if debug:
|
||||
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
|
||||
scheduler_d.step(d_loss.detach())
|
||||
scheduler_g.step(adversarial_loss.detach())
|
||||
|
||||
# ========= SAVE LATEST AUDIO =========
|
||||
high_quality_audio = (good_quality_data, original_sample_rate)
|
||||
low_quality_audio = (bad_quality_data, original_sample_rate)
|
||||
ai_enhanced_audio = (generator_output, original_sample_rate)
|
||||
|
||||
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
|
||||
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
|
||||
|
||||
new_epoch = generator_epoch+epoch
|
||||
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
|
||||
# ---------------------------
|
||||
# Checkpoint helpers
|
||||
# ---------------------------
|
||||
models_dir = "./models"
|
||||
os.makedirs(models_dir, exist_ok=True)
|
||||
|
||||
|
||||
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
|
||||
torch.save(generator, "models/epoch-5000-generator.pt")
|
||||
print("Training complete!")
|
||||
def save_ckpt(path, epoch):
|
||||
torch.save(
|
||||
{
|
||||
"epoch": epoch,
|
||||
"G": generator.state_dict(),
|
||||
"D": discriminator.state_dict(),
|
||||
"optG": optimizer_g.state_dict(),
|
||||
"optD": optimizer_d.state_dict(),
|
||||
"scaler": scaler.state_dict(),
|
||||
"schedG": scheduler_g.state_dict(),
|
||||
"schedD": scheduler_d.state_dict(),
|
||||
},
|
||||
path,
|
||||
)
|
||||
|
||||
start_training()
|
||||
|
||||
start_epoch = 0
|
||||
if args.resume:
|
||||
ckpt = torch.load(os.path.join(models_dir, "last.pt"), map_location=device)
|
||||
generator.load_state_dict(ckpt["G"])
|
||||
discriminator.load_state_dict(ckpt["D"])
|
||||
optimizer_g.load_state_dict(ckpt["optG"])
|
||||
optimizer_d.load_state_dict(ckpt["optD"])
|
||||
scaler.load_state_dict(ckpt["scaler"])
|
||||
scheduler_g.load_state_dict(ckpt["schedG"])
|
||||
scheduler_d.load_state_dict(ckpt["schedD"])
|
||||
start_epoch = ckpt.get("epoch", 1)
|
||||
|
||||
# ---------------------------
|
||||
# Training loop (safer)
|
||||
# ---------------------------
|
||||
|
||||
if not train_loader or not train_loader.batch_size:
|
||||
print("There is no data to train with! Exiting...")
|
||||
exit()
|
||||
|
||||
max_batch = max(1, train_loader.batch_size)
|
||||
real_buf = torch.full((max_batch, 1), 0.9, device=device) # label smoothing
|
||||
fake_buf = torch.zeros(max_batch, 1, device=device)
|
||||
|
||||
try:
|
||||
for epoch in range(start_epoch, args.epochs):
|
||||
generator.train()
|
||||
discriminator.train()
|
||||
|
||||
running_d, running_g, steps = 0.0, 0.0, 0
|
||||
|
||||
for i, (
|
||||
(high_quality, low_quality),
|
||||
(high_sample_rate, low_sample_rate),
|
||||
) in enumerate(tqdm.tqdm(train_loader, desc=f"Epoch {epoch}")):
|
||||
batch_size = high_quality.size(0)
|
||||
|
||||
high_quality = high_quality.to(device, non_blocking=True)
|
||||
low_quality = low_quality.to(device, non_blocking=True)
|
||||
|
||||
real_labels = real_buf[:batch_size]
|
||||
fake_labels = fake_buf[:batch_size]
|
||||
|
||||
# --- Discriminator ---
|
||||
optimizer_d.zero_grad(set_to_none=True)
|
||||
with autocast(device_type=device.type):
|
||||
d_loss = discriminator_train(
|
||||
high_quality,
|
||||
low_quality,
|
||||
real_labels,
|
||||
fake_labels,
|
||||
discriminator,
|
||||
generator,
|
||||
criterion_d,
|
||||
)
|
||||
|
||||
scaler.scale(d_loss).backward()
|
||||
scaler.unscale_(optimizer_d)
|
||||
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), 1.0)
|
||||
scaler.step(optimizer_d)
|
||||
|
||||
# --- Generator ---
|
||||
optimizer_g.zero_grad(set_to_none=True)
|
||||
with autocast(device_type=device.type):
|
||||
g_out, g_total, g_adv = generator_train(
|
||||
low_quality,
|
||||
high_quality,
|
||||
real_labels,
|
||||
generator,
|
||||
discriminator,
|
||||
criterion_d,
|
||||
)
|
||||
|
||||
scaler.scale(g_total).backward()
|
||||
scaler.unscale_(optimizer_g)
|
||||
torch.nn.utils.clip_grad_norm_(generator.parameters(), 1.0)
|
||||
scaler.step(optimizer_g)
|
||||
|
||||
scaler.update()
|
||||
|
||||
running_d += float(d_loss.detach().cpu().item())
|
||||
running_g += float(g_total.detach().cpu().item())
|
||||
steps += 1
|
||||
|
||||
# epoch averages & schedulers
|
||||
if steps == 0:
|
||||
print("No steps in epoch (empty dataloader?). Exiting.")
|
||||
break
|
||||
|
||||
mean_d = running_d / steps
|
||||
mean_g = running_g / steps
|
||||
|
||||
scheduler_d.step(mean_d)
|
||||
scheduler_g.step(mean_g)
|
||||
|
||||
save_ckpt(os.path.join(models_dir, "last.pt"), epoch)
|
||||
print(f"Epoch {epoch} done | D {mean_d:.4f} | G {mean_g:.4f}")
|
||||
|
||||
except Exception:
|
||||
try:
|
||||
save_ckpt(os.path.join(models_dir, "crash_last.pt"), epoch)
|
||||
print(f"Saved crash checkpoint for epoch {epoch}")
|
||||
except Exception as e:
|
||||
print("Failed saving crash checkpoint:", e)
|
||||
raise
|
||||
|
||||
try:
|
||||
torch.save(generator.state_dict(), os.path.join(models_dir, "final_generator.pt"))
|
||||
torch.save(
|
||||
discriminator.state_dict(), os.path.join(models_dir, "final_discriminator.pt")
|
||||
)
|
||||
except Exception as e:
|
||||
print("Failed to save final states:", e)
|
||||
|
||||
print("Training finished.")
|
||||
|
@@ -1,89 +1,88 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
import torchaudio
|
||||
import torchaudio.transforms as T
|
||||
|
||||
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
|
||||
mfccs_true = mfcc_transform(y_true)
|
||||
mfccs_pred = mfcc_transform(y_pred)
|
||||
from utils.MultiResolutionSTFTLoss import MultiResolutionSTFTLoss
|
||||
|
||||
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
|
||||
mfccs_true = mfccs_true[:, :, :min_len]
|
||||
mfccs_pred = mfccs_pred[:, :, :min_len]
|
||||
mel_transform: T.MelSpectrogram
|
||||
stft_transform: T.Spectrogram
|
||||
# mfcc_transform: T.MFCC
|
||||
|
||||
loss = torch.mean((mfccs_true - mfccs_pred)**2)
|
||||
return loss
|
||||
|
||||
def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
|
||||
mel_spec_true = mel_transform(y_true)
|
||||
mel_spec_pred = mel_transform(y_pred)
|
||||
# def init(mel_trans: T.MelSpectrogram, stft_trans: T.Spectrogram, mfcc_trans: T.MFCC):
|
||||
# """Initializes the global transform variables for the module."""
|
||||
# global mel_transform, stft_transform, mfcc_transform
|
||||
# mel_transform = mel_trans
|
||||
# stft_transform = stft_trans
|
||||
# mfcc_transform = mfcc_trans
|
||||
|
||||
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
|
||||
mel_spec_true = mel_spec_true[..., :min_len]
|
||||
mel_spec_pred = mel_spec_pred[..., :min_len]
|
||||
|
||||
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
|
||||
return loss
|
||||
def init(mel_trans: T.MelSpectrogram, stft_trans: T.Spectrogram):
|
||||
"""Initializes the global transform variables for the module."""
|
||||
global mel_transform, stft_transform
|
||||
mel_transform = mel_trans
|
||||
stft_transform = stft_trans
|
||||
|
||||
def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
|
||||
mel_spec_true = mel_transform(y_true)
|
||||
mel_spec_pred = mel_transform(y_pred)
|
||||
|
||||
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
|
||||
mel_spec_true = mel_spec_true[..., :min_len]
|
||||
mel_spec_pred = mel_spec_pred[..., :min_len]
|
||||
# def mfcc_loss(y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
|
||||
# """Computes the Mean Squared Error (MSE) loss on MFCCs."""
|
||||
# mfccs_true = mfcc_transform(y_true)
|
||||
# mfccs_pred = mfcc_transform(y_pred)
|
||||
# return F.mse_loss(mfccs_pred, mfccs_true)
|
||||
|
||||
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
|
||||
return loss
|
||||
|
||||
def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
|
||||
stft_mag_true = stft_transform(y_true)
|
||||
stft_mag_pred = stft_transform(y_pred)
|
||||
# def mel_spectrogram_loss(
|
||||
# y_true: torch.Tensor, y_pred: torch.Tensor, loss_type: str = "l1"
|
||||
# ) -> torch.Tensor:
|
||||
# """Calculates L1 or L2 loss on the Mel Spectrogram."""
|
||||
# mel_spec_true = mel_transform(y_true)
|
||||
# mel_spec_pred = mel_transform(y_pred)
|
||||
# if loss_type == "l1":
|
||||
# return F.l1_loss(mel_spec_pred, mel_spec_true)
|
||||
# elif loss_type == "l2":
|
||||
# return F.mse_loss(mel_spec_pred, mel_spec_true)
|
||||
# else:
|
||||
# raise ValueError("loss_type must be 'l1' or 'l2'")
|
||||
|
||||
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
|
||||
stft_mag_true = stft_mag_true[..., :min_len]
|
||||
stft_mag_pred = stft_mag_pred[..., :min_len]
|
||||
|
||||
loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
|
||||
return loss
|
||||
# def log_stft_magnitude_loss(
|
||||
# y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7
|
||||
# ) -> torch.Tensor:
|
||||
# """Calculates L1 loss on the log STFT magnitude."""
|
||||
# stft_mag_true = stft_transform(y_true)
|
||||
# stft_mag_pred = stft_transform(y_pred)
|
||||
# return F.l1_loss(torch.log(stft_mag_pred + eps), torch.log(stft_mag_true + eps))
|
||||
|
||||
def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
|
||||
stft_mag_true = stft_transform(y_true)
|
||||
stft_mag_pred = stft_transform(y_pred)
|
||||
|
||||
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
|
||||
stft_mag_true = stft_mag_true[..., :min_len]
|
||||
stft_mag_pred = stft_mag_pred[..., :min_len]
|
||||
stft_loss_fn = MultiResolutionSTFTLoss(
|
||||
fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240]
|
||||
)
|
||||
|
||||
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
|
||||
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
|
||||
|
||||
loss = torch.mean(norm_diff / (norm_true + eps))
|
||||
return loss
|
||||
|
||||
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Forward pass for real samples
|
||||
def discriminator_train(
|
||||
high_quality,
|
||||
low_quality,
|
||||
real_labels,
|
||||
fake_labels,
|
||||
discriminator,
|
||||
generator,
|
||||
criterion,
|
||||
):
|
||||
discriminator_decision_from_real = discriminator(high_quality)
|
||||
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
||||
|
||||
with torch.no_grad():
|
||||
generator_output = generator(low_quality)
|
||||
discriminator_decision_from_fake = discriminator(generator_output)
|
||||
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
|
||||
d_loss_fake = criterion(
|
||||
discriminator_decision_from_fake,
|
||||
fake_labels.expand_as(discriminator_decision_from_fake),
|
||||
)
|
||||
|
||||
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
||||
|
||||
d_loss.backward()
|
||||
# Optional: Gradient Clipping (can be helpful)
|
||||
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
|
||||
optimizer.step()
|
||||
|
||||
return d_loss
|
||||
|
||||
|
||||
def generator_train(
|
||||
low_quality,
|
||||
high_quality,
|
||||
@@ -91,52 +90,65 @@ def generator_train(
|
||||
generator,
|
||||
discriminator,
|
||||
adv_criterion,
|
||||
g_optimizer,
|
||||
device,
|
||||
mel_transform: T.MelSpectrogram,
|
||||
stft_transform: T.Spectrogram,
|
||||
mfcc_transform: T.MFCC,
|
||||
lambda_adv: float = 1.0,
|
||||
lambda_mel_l1: float = 10.0,
|
||||
lambda_log_stft: float = 1.0,
|
||||
lambda_mfcc: float = 1.0
|
||||
lambda_feat: float = 10.0,
|
||||
lambda_stft: float = 2.5,
|
||||
):
|
||||
g_optimizer.zero_grad()
|
||||
|
||||
generator_output = generator(low_quality)
|
||||
|
||||
discriminator_decision = discriminator(generator_output)
|
||||
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
|
||||
# adversarial_loss = adv_criterion(
|
||||
# discriminator_decision, real_labels.expand_as(discriminator_decision)
|
||||
# )
|
||||
adversarial_loss = adv_criterion(discriminator_decision, real_labels)
|
||||
|
||||
mel_l1 = 0.0
|
||||
log_stft_l1 = 0.0
|
||||
mfcc_l = 0.0
|
||||
combined_loss = lambda_adv * adversarial_loss
|
||||
|
||||
# Calculate Mel L1 Loss if weight is positive
|
||||
if lambda_mel_l1 > 0:
|
||||
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality, generator_output)
|
||||
stft_losses = stft_loss_fn(high_quality, generator_output)
|
||||
stft_loss = stft_losses["total"]
|
||||
|
||||
# Calculate Log STFT L1 Loss if weight is positive
|
||||
if lambda_log_stft > 0:
|
||||
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality, generator_output)
|
||||
combined_loss = (lambda_adv * adversarial_loss) + (lambda_stft * stft_loss)
|
||||
|
||||
# Calculate MFCC Loss if weight is positive
|
||||
if lambda_mfcc > 0:
|
||||
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality, generator_output)
|
||||
return generator_output, combined_loss, adversarial_loss
|
||||
|
||||
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
|
||||
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
|
||||
mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
|
||||
|
||||
combined_loss = (lambda_adv * adversarial_loss) + \
|
||||
(lambda_mel_l1 * mel_l1_tensor) + \
|
||||
(lambda_log_stft * log_stft_l1_tensor) + \
|
||||
(lambda_mfcc * mfcc_l_tensor)
|
||||
# def generator_train(
|
||||
# low_quality,
|
||||
# high_quality,
|
||||
# real_labels,
|
||||
# generator,
|
||||
# discriminator,
|
||||
# adv_criterion,
|
||||
# lambda_adv: float = 1.0,
|
||||
# lambda_mel_l1: float = 10.0,
|
||||
# lambda_log_stft: float = 1.0,
|
||||
|
||||
combined_loss.backward()
|
||||
# Optional: Gradient Clipping
|
||||
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
|
||||
g_optimizer.step()
|
||||
# ):
|
||||
# generator_output = generator(low_quality)
|
||||
|
||||
# 6. Return values for logging
|
||||
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor
|
||||
# discriminator_decision = discriminator(generator_output)
|
||||
# adversarial_loss = adv_criterion(
|
||||
# discriminator_decision, real_labels.expand_as(discriminator_decision)
|
||||
# )
|
||||
|
||||
# combined_loss = lambda_adv * adversarial_loss
|
||||
|
||||
# if lambda_mel_l1 > 0:
|
||||
# mel_l1_loss = mel_spectrogram_loss(high_quality, generator_output, "l1")
|
||||
# combined_loss += lambda_mel_l1 * mel_l1_loss
|
||||
# else:
|
||||
# mel_l1_loss = torch.tensor(0.0, device=low_quality.device) # For logging
|
||||
|
||||
# if lambda_log_stft > 0:
|
||||
# log_stft_loss = log_stft_magnitude_loss(high_quality, generator_output)
|
||||
# combined_loss += lambda_log_stft * log_stft_loss
|
||||
# else:
|
||||
# log_stft_loss = torch.tensor(0.0, device=low_quality.device)
|
||||
|
||||
# if lambda_mfcc > 0:
|
||||
# mfcc_loss_val = mfcc_loss(high_quality, generator_output)
|
||||
# combined_loss += lambda_mfcc * mfcc_loss_val
|
||||
# else:
|
||||
# mfcc_loss_val = torch.tensor(0.0, device=low_quality.device)
|
||||
|
||||
# return generator_output, combined_loss, adversarial_loss
|
||||
|
62
utils/MultiResolutionSTFTLoss.py
Normal file
62
utils/MultiResolutionSTFTLoss.py
Normal file
@@ -0,0 +1,62 @@
|
||||
from typing import Dict, List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio.transforms as T
|
||||
|
||||
|
||||
class MultiResolutionSTFTLoss(nn.Module):
|
||||
"""
|
||||
Computes a loss based on multiple STFT resolutions, including both
|
||||
spectral convergence and log STFT magnitude components.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fft_sizes: List[int] = [1024, 2048, 512],
|
||||
hop_sizes: List[int] = [120, 240, 50],
|
||||
win_lengths: List[int] = [600, 1200, 240],
|
||||
eps: float = 1e-7,
|
||||
):
|
||||
super().__init__()
|
||||
self.stft_transforms = nn.ModuleList(
|
||||
[
|
||||
T.Spectrogram(
|
||||
n_fft=n_fft, win_length=win_len, hop_length=hop_len, power=None
|
||||
)
|
||||
for n_fft, hop_len, win_len in zip(fft_sizes, hop_sizes, win_lengths)
|
||||
]
|
||||
)
|
||||
self.eps = eps
|
||||
|
||||
def forward(
|
||||
self, y_true: torch.Tensor, y_pred: torch.Tensor
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
sc_loss = 0.0 # Spectral Convergence Loss
|
||||
mag_loss = 0.0 # Log STFT Magnitude Loss
|
||||
|
||||
for stft in self.stft_transforms:
|
||||
stft.to(y_pred.device) # Ensure transform is on the correct device
|
||||
|
||||
# Get complex STFTs
|
||||
stft_true = stft(y_true)
|
||||
stft_pred = stft(y_pred)
|
||||
|
||||
# Get magnitudes
|
||||
stft_mag_true = torch.abs(stft_true)
|
||||
stft_mag_pred = torch.abs(stft_pred)
|
||||
|
||||
# --- Spectral Convergence Loss ---
|
||||
# || |S_true| - |S_pred| ||_F / || |S_true| ||_F
|
||||
norm_true = torch.linalg.norm(stft_mag_true, dim=(-2, -1))
|
||||
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, dim=(-2, -1))
|
||||
sc_loss += torch.mean(norm_diff / (norm_true + self.eps))
|
||||
|
||||
# --- Log STFT Magnitude Loss ---
|
||||
mag_loss += F.l1_loss(
|
||||
torch.log(stft_mag_pred + self.eps), torch.log(stft_mag_true + self.eps)
|
||||
)
|
||||
|
||||
total_loss = sc_loss + mag_loss
|
||||
return {"total": total_loss, "sc": sc_loss, "mag": mag_loss}
|
0
utils/__init__.py
Normal file
0
utils/__init__.py
Normal file
Reference in New Issue
Block a user