Files
SISU/utils/TrainingTools.py
2025-11-18 21:34:59 +02:00

59 lines
1.7 KiB
Python

import torch
from utils.MultiResolutionSTFTLoss import MultiResolutionSTFTLoss
# stft_loss_fn = MultiResolutionSTFTLoss(
# fft_sizes=[512, 1024, 2048, 4096],
# hop_sizes=[128, 256, 512, 1024],
# win_lengths=[512, 1024, 2048, 4096]
# )
stft_loss_fn = MultiResolutionSTFTLoss(
fft_sizes=[512, 1024, 2048],
hop_sizes=[64, 128, 256],
win_lengths=[256, 512, 1024]
)
def signal_mae(input_one: torch.Tensor, input_two: torch.Tensor) -> torch.Tensor:
absolute_difference = torch.abs(input_one - input_two)
return torch.mean(absolute_difference)
def discriminator_train(
high_quality,
low_quality,
high_labels,
low_labels,
discriminator,
criterion,
generator_output
):
real_pair = torch.cat((low_quality, high_quality), dim=1)
decision_real = discriminator(real_pair)
d_loss_real = criterion(decision_real, high_labels)
fake_pair = torch.cat((low_quality, generator_output), dim=1)
decision_fake = discriminator(fake_pair)
d_loss_fake = criterion(decision_fake, low_labels)
d_loss = (d_loss_real + d_loss_fake) / 2.0
return d_loss
def generator_train(
low_quality, high_quality, real_labels, generator, discriminator, adv_criterion, generator_output):
fake_pair = torch.cat((low_quality, generator_output), dim=1)
discriminator_decision = discriminator(fake_pair)
adversarial_loss = adv_criterion(discriminator_decision, real_labels)
mae_loss = signal_mae(generator_output, high_quality)
stft_loss = stft_loss_fn(high_quality, generator_output)["total"]
lambda_mae = 10.0
lambda_stft = 2.5
lambda_adv = 2.5
combined_loss = (lambda_mae * mae_loss) + (lambda_stft * stft_loss) + (lambda_adv * adversarial_loss)
return combined_loss, adversarial_loss