| Added ability to set epoch.

This commit is contained in:
NikkeDoy 2025-02-26 19:36:43 +02:00
parent 741dcce7b4
commit 8332b0df2d

View File

@ -21,21 +21,45 @@ from generator import SISUGenerator
from discriminator import SISUDiscriminator
import librosa
import numpy as np
def mfcc_loss(y_true, y_pred, sr):
# 1. Ensure sr is a NumPy scalar (not a Tensor)
if isinstance(sr, torch.Tensor): # Check if it's a Tensor
sr = sr.item() # Extract the value as a Python number
"""Calculates MFCC loss between two audio signals.
# 2. Convert y_true and y_pred to NumPy arrays
y_true_np = y_true.cpu().detach().numpy()[0] # .cpu() is crucial!
Args:
y_true: Target audio signal (PyTorch tensor).
y_pred: Predicted audio signal (PyTorch tensor).
sr: Sample rate (NumPy scalar).
Returns:
MFCC loss (PyTorch tensor).
"""
# 1. Ensure sr is a NumPy scalar (not a Tensor)
if isinstance(sr, torch.Tensor):
sr = sr.item()
# 2. Convert y_true and y_pred to NumPy arrays (and detach from graph)
y_true_np = y_true.cpu().detach().numpy()[0] # .cpu() and .detach() are crucial!
y_pred_np = y_pred.cpu().detach().numpy()[0]
# 3. Dynamically calculate n_fft based on signal length
signal_length = min(y_true_np.shape[0], y_pred_np.shape[0]) # Use shortest signal length
n_fft = min(2048, 2**int(np.log2(signal_length))) # Power of 2, up to 2048
mfccs_true = librosa.feature.mfcc(y=y_true_np, sr=sr, n_mfcc=20)
mfccs_pred = librosa.feature.mfcc(y=y_pred_np, sr=sr, n_mfcc=20)
# 4. Calculate MFCCs using adjusted n_fft
mfccs_true = librosa.feature.mfcc(y=y_true_np, sr=sr, n_fft=n_fft, n_mfcc=20)
mfccs_pred = librosa.feature.mfcc(y=y_pred_np, sr=sr, n_fft=n_fft, n_mfcc=20)
# 3. Convert MFCCs back to PyTorch tensors and ensure correct device
# 5. Truncate MFCCs to the same length (important!)
len_true = mfccs_true.shape[1]
len_pred = mfccs_pred.shape[1]
min_len = min(len_true, len_pred)
mfccs_true = mfccs_true[:, :min_len]
mfccs_pred = mfccs_pred[:, :min_len]
# 6. Convert MFCCs back to PyTorch tensors and ensure correct device
mfccs_true = torch.tensor(mfccs_true, device=y_true.device, dtype=torch.float32)
mfccs_pred = torch.tensor(mfccs_pred, device=y_pred.device, dtype=torch.float32)
@ -87,6 +111,7 @@ parser.add_argument("--generator", type=str, default=None,
help="Path to the generator model file")
parser.add_argument("--discriminator", type=str, default=None,
help="Path to the discriminator model file")
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
parser.add_argument("--verbose", action="store_true", help="Increase output verbosity")
args = parser.parse_args()
@ -120,6 +145,8 @@ train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
generator = SISUGenerator()
discriminator = SISUDiscriminator()
epoch: int = args.epoch
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, weights_only=True))
if args.discriminator is not None:
@ -153,7 +180,7 @@ def start_training():
times_correct = 0
# ========= TRAINING =========
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
# for high_quality_clip, low_quality_clip in train_data_loader:
high_quality_sample = (high_quality_clip[0].to(device), high_quality_clip[1])
low_quality_sample = (low_quality_clip[0].to(device), low_quality_clip[1])
@ -181,16 +208,19 @@ def start_training():
low_quality_audio = low_quality_clip
ai_enhanced_audio = (generator_output, high_quality_clip[1])
if generator_epoch % 10 == 0:
print(f"Saved epoch {generator_epoch}!")
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
new_epoch = generator_epoch+epoch
torch.save(discriminator.state_dict(), f"{models_dir}/discriminator_epoch_{generator_epoch}.pt")
torch.save(generator.state_dict(), f"{models_dir}/generator_epoch_{generator_epoch}.pt")
torch.save(discriminator, f"{models_dir}/discriminator_epoch_{generator_epoch}_full.pt")
torch.save(generator, f"{models_dir}/generator_epoch_{generator_epoch}_full.pt")
if generator_epoch % 10 == 0:
print(f"Saved epoch {new_epoch}!")
torchaudio.save(f"./output/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
if debug:
print(generator.state_dict().keys())
print(discriminator.state_dict().keys())
torch.save(discriminator.state_dict(), f"{models_dir}/discriminator_epoch_{new_epoch}.pt")
torch.save(generator.state_dict(), f"{models_dir}/generator_epoch_{new_epoch}.pt")
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
torch.save(generator, "models/epoch-5000-generator.pt")