12 Commits

10 changed files with 487 additions and 171 deletions

View File

@ -16,3 +16,56 @@ def stretch_tensor(tensor, target_length):
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
return tensor
def pad_tensor(audio_tensor: torch.Tensor, target_length: int = 128):
current_length = audio_tensor.shape[-1]
if current_length < target_length:
padding_needed = target_length - current_length
padding_tuple = (0, padding_needed)
padded_audio_tensor = F.pad(audio_tensor, padding_tuple, mode='constant', value=0)
else:
padded_audio_tensor = audio_tensor
return padded_audio_tensor
def split_audio(audio_tensor: torch.Tensor, chunk_size: int = 128) -> list[torch.Tensor]:
if not isinstance(chunk_size, int) or chunk_size <= 0:
raise ValueError("chunk_size must be a positive integer.")
# Handle scalar tensor edge case if necessary
if audio_tensor.dim() == 0:
return [audio_tensor] if audio_tensor.numel() > 0 else []
# Identify the dimension to split (usually the last one, representing time/samples)
split_dim = -1
num_samples = audio_tensor.shape[split_dim]
if num_samples == 0:
return [] # Return empty list if the dimension to split is empty
# Use torch.split to divide the tensor into chunks
# It handles the last chunk being potentially smaller automatically.
chunks = list(torch.split(audio_tensor, chunk_size, dim=split_dim))
return chunks
def reconstruct_audio(chunks: list[torch.Tensor]) -> torch.Tensor:
if not chunks:
return torch.empty(0)
if len(chunks) == 1 and chunks[0].dim() == 0:
return chunks[0]
concat_dim = -1
try:
reconstructed_tensor = torch.cat(chunks, dim=concat_dim)
except RuntimeError as e:
raise RuntimeError(
f"Failed to concatenate audio chunks. Ensure chunks have compatible shapes "
f"for concatenation along dimension {concat_dim}. Original error: {e}"
)
return reconstructed_tensor

View File

@ -18,6 +18,7 @@ SISU (Super Ingenious Sound Upscaler) is a project that uses GANs (Generative Ad
1. **Set Up**:
- Make sure you have Python installed (version 3.8 or higher).
- Install needed packages: `pip install -r requirements.txt`
- Install current version of PyTorch (CUDA/ROCm/What ever your device supports)
2. **Prepare Audio Data**:
- Put your audio files in the `dataset/good` folder.

60
app.py Normal file
View File

@ -0,0 +1,60 @@
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchaudio
import tqdm
import argparse
import math
import os
import AudioUtils
from generator import SISUGenerator
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--model", type=str, help="Model to use for upscaling")
parser.add_argument("--clip_length", type=int, default=1024, help="Internal clip length, leave unspecified if unsure")
parser.add_argument("-i", "--input", type=str, help="Input audio file")
parser.add_argument("-o", "--output", type=str, help="Output audio file")
args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
generator = SISUGenerator()
models_dir = args.model
clip_length = args.clip_length
input_audio = args.input
output_audio = args.output
if models_dir:
generator.load_state_dict(torch.load(f"{models_dir}", map_location=device, weights_only=True))
else:
print(f"Generator model (--model) isn't specified. Do you have the trained model? If not you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)")
generator = generator.to(device)
def start():
# To Mono!
audio, original_sample_rate = torchaudio.load(input_audio, normalize=True)
audio = AudioUtils.stereo_tensor_to_mono(audio)
splitted_audio = AudioUtils.split_audio(audio, clip_length)
splitted_audio_on_device = [t.to(device) for t in splitted_audio]
processed_audio = []
for clip in tqdm.tqdm(splitted_audio_on_device, desc="Processing..."):
processed_audio.append(generator(clip))
reconstructed_audio = AudioUtils.reconstruct_audio(processed_audio)
print(f"Saving {output_audio}!")
torchaudio.save(output_audio, reconstructed_audio.cpu().detach(), original_sample_rate)
start()

51
data.py
View File

@ -5,49 +5,42 @@ import torchaudio
import os
import random
import torchaudio.transforms as T
import tqdm
import AudioUtils
class AudioDataset(Dataset):
audio_sample_rates = [11025]
MAX_LENGTH = 44100 # Define your desired maximum length here
def __init__(self, input_dir, device):
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
def __init__(self, input_dir, device, clip_length = 1024):
self.device = device
input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav') or f.endswith('.mp3') or f.endswith('.flac')]
def __len__(self):
return len(self.input_files)
def __getitem__(self, idx):
# Load high-quality audio
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
data = []
for audio_clip in tqdm.tqdm(input_files, desc=f"Processing {len(input_files)} audio file(s)"):
audio, original_sample_rate = torchaudio.load(audio_clip, normalize=True)
audio = AudioUtils.stereo_tensor_to_mono(audio)
# Generate low-quality audio with random downsampling
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
low_quality_audio = resample_transform_low(high_quality_audio)
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
low_quality_audio = resample_transform_high(low_quality_audio)
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio)
low_audio = resample_transform_low(audio)
low_audio = resample_transform_high(low_audio)
# Pad or truncate high-quality audio
if high_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - high_quality_audio.shape[1]
high_quality_audio = F.pad(high_quality_audio, (0, padding))
elif high_quality_audio.shape[1] > self.MAX_LENGTH:
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH]
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length)
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(splitted_high_quality_audio[-1], clip_length)
# Pad or truncate low-quality audio
if low_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - low_quality_audio.shape[1]
low_quality_audio = F.pad(low_quality_audio, (0, padding))
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
splitted_low_quality_audio = AudioUtils.split_audio(low_audio, clip_length)
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(splitted_low_quality_audio[-1], clip_length)
high_quality_audio = high_quality_audio.to(self.device)
low_quality_audio = low_quality_audio.to(self.device)
for high_quality_sample, low_quality_sample in zip(splitted_high_quality_audio, splitted_low_quality_audio):
data.append(((high_quality_sample, low_quality_sample), (original_sample_rate, mangled_sample_rate)))
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)
self.audio_data = data
def __len__(self):
return len(self.audio_data)
def __getitem__(self, idx):
return self.audio_data[idx]

View File

@ -2,23 +2,34 @@ import torch
import torch.nn as nn
import torch.nn.utils as utils
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True):
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True):
padding = (kernel_size // 2) * dilation
conv_layer = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)
conv_layer = nn.Conv1d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding
)
if spectral_norm:
conv_layer = utils.spectral_norm(conv_layer)
return nn.Sequential(
conv_layer,
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm1d(out_channels)
)
layers = [conv_layer]
layers.append(nn.LeakyReLU(0.2, inplace=True))
if use_instance_norm:
layers.append(nn.InstanceNorm1d(out_channels))
return nn.Sequential(*layers)
class AttentionBlock(nn.Module):
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(),
nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid()
)
@ -28,31 +39,25 @@ class AttentionBlock(nn.Module):
return x * attention_weights
class SISUDiscriminator(nn.Module):
def __init__(self, layers=4): #Increased base layer count
def __init__(self, base_channels=16):
super(SISUDiscriminator, self).__init__()
layers = base_channels
self.model = nn.Sequential(
discriminator_block(1, layers, kernel_size=3, stride=1), #Aggressive downsampling
discriminator_block(layers, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
#AttentionBlock(layers * 4), #Added attention
#discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
#AttentionBlock(layers * 8), #Added attention
#discriminator_block(layers * 8, layers * 16, kernel_size=5, dilation=8),
#discriminator_block(layers * 16, layers * 16, kernel_size=3, dilation=1),
#discriminator_block(layers * 16, layers * 8, kernel_size=3, dilation=2),
#discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=1),
discriminator_block(layers * 4, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 2, layers, kernel_size=3, stride=1),
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False) #last layer no spectral norm.
discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False),
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True),
AttentionBlock(layers * 4),
discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False)
)
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.model(x)
x = self.global_avg_pool(x)
x = x.view(-1, 1)
x = self.sigmoid(x)
x = x.view(x.size(0), -1)
return x

30
file_utils.py Normal file
View File

@ -0,0 +1,30 @@
import json
filepath = "my_data.json"
def write_data(filepath, data, debug=False):
try:
with open(filepath, 'w') as f:
json.dump(data, f, indent=4) # Use indent for pretty formatting
if debug:
print(f"Data written to '{filepath}'")
except Exception as e:
print(f"Error writing to file: {e}")
def read_data(filepath, debug=False):
try:
with open(filepath, 'r') as f:
data = json.load(f)
if debug:
print(f"Data read from '{filepath}'")
return data
except FileNotFoundError:
print(f"File not found: {filepath}")
return None
except json.JSONDecodeError:
print(f"Error decoding JSON from file: {filepath}")
return None
except Exception as e:
print(f"Error reading from file: {e}")
return None

View File

@ -1,18 +1,28 @@
import torch
import torch.nn as nn
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
return nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
nn.BatchNorm1d(out_channels),
nn.Conv1d(
in_channels,
out_channels,
kernel_size=kernel_size,
dilation=dilation,
padding=(kernel_size // 2) * dilation
),
nn.InstanceNorm1d(out_channels),
nn.PReLU()
)
class AttentionBlock(nn.Module):
"""
Simple Channel Attention Block. Learns to weight channels based on their importance.
"""
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(),
nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid()
)
@ -24,7 +34,11 @@ class AttentionBlock(nn.Module):
class ResidualInResidualBlock(nn.Module):
def __init__(self, channels, num_convs=3):
super(ResidualInResidualBlock, self).__init__()
self.conv_layers = nn.Sequential(*[conv_block(channels, channels) for _ in range(num_convs)])
self.conv_layers = nn.Sequential(
*[conv_block(channels, channels) for _ in range(num_convs)]
)
self.attention = AttentionBlock(channels)
def forward(self, x):
@ -34,19 +48,27 @@ class ResidualInResidualBlock(nn.Module):
return x + residual
class SISUGenerator(nn.Module):
def __init__(self, layer=4, num_rirb=4): #increased base layer and rirb amounts
def __init__(self, channels=16, num_rirb=4, alpha=1.0):
super(SISUGenerator, self).__init__()
self.alpha = alpha
self.conv1 = nn.Sequential(
nn.Conv1d(1, layer, kernel_size=7, padding=3),
nn.BatchNorm1d(layer),
nn.Conv1d(1, channels, kernel_size=7, padding=3),
nn.InstanceNorm1d(channels),
nn.PReLU(),
)
self.rir_blocks = nn.Sequential(*[ResidualInResidualBlock(layer) for _ in range(num_rirb)])
self.final_layer = nn.Conv1d(layer, 1, kernel_size=3, padding=1)
self.rir_blocks = nn.Sequential(
*[ResidualInResidualBlock(channels) for _ in range(num_rirb)]
)
self.final_layer = nn.Conv1d(channels, 1, kernel_size=3, padding=1)
def forward(self, x):
residual = x
residual_input = x
x = self.conv1(x)
x = self.rir_blocks(x)
x = self.final_layer(x)
return x + residual
x_rirb_out = self.rir_blocks(x)
learned_residual = self.final_layer(x_rirb_out)
output = residual_input + self.alpha * learned_residual
return output

View File

@ -5,10 +5,8 @@ MarkupSafe==2.1.5
mpmath==1.3.0
networkx==3.4.2
numpy==2.2.3
pytorch-triton-rocm==3.2.0+git4b3bb1f8
pillow==11.0.0
setuptools==70.2.0
sympy==1.13.3
torch==2.7.0.dev20250226+rocm6.3
torchaudio==2.6.0.dev20250226+rocm6.3
tqdm==4.67.1
typing_extensions==4.12.2

View File

@ -20,6 +20,9 @@ from data import AudioDataset
from generator import SISUGenerator
from discriminator import SISUDiscriminator
from training_utils import discriminator_train, generator_train
import file_utils as Data
import torchaudio.transforms as T
# Init script argument parser
@ -31,95 +34,87 @@ parser.add_argument("--discriminator", type=str, default=None,
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
parser.add_argument("--debug", action="store_true", help="Print debug logs")
parser.add_argument("--continue_training", action="store_true", help="Continue training using temp_generator and temp_discriminator models")
args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Parameters
sample_rate = 44100
n_fft = 1024
win_length = n_fft
hop_length = n_fft // 4
n_mels = 40
n_mfcc = 13
mfcc_transform = T.MFCC(
sample_rate=44100,
n_mfcc=20,
melkwargs={'n_fft': 2048, 'hop_length': 256}
sample_rate=sample_rate,
n_mfcc=n_mfcc,
melkwargs={
'n_fft': n_fft,
'hop_length': hop_length,
'win_length': win_length,
'n_mels': n_mels,
'power': 1.0,
}
).to(device)
def gpu_mfcc_loss(y_true, y_pred):
mfccs_true = mfcc_transform(y_true)
mfccs_pred = mfcc_transform(y_pred)
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len]
loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
optimizer_d.zero_grad()
# Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality[0])
d_loss_real = criterion_d(discriminator_decision_from_real, real_labels)
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output.detach())
d_loss_fake = criterion_d(discriminator_decision_from_fake, fake_labels)
# Combine real and fake losses
d_loss = (d_loss_real + d_loss_fake) / 2.0
# Backward pass and optimization
d_loss.backward()
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer_d.step()
return d_loss
def generator_train(low_quality, high_quality, real_labels):
optimizer_g.zero_grad()
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
#mfcc_l = gpu_mfcc_loss(high_quality[0], generator_output)
discriminator_decision = discriminator(generator_output)
adversarial_loss = criterion_g(discriminator_decision, real_labels)
#combined_loss = adversarial_loss + 0.5 * mfcc_l
adversarial_loss.backward()
optimizer_g.step()
#return (generator_output, combined_loss, adversarial_loss, mfcc_l)
return (generator_output, adversarial_loss)
mel_transform = T.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mels=n_mels,
power=1.0 # Magnitude Mel
).to(device)
stft_transform = T.Spectrogram(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length
).to(device)
debug = args.debug
# Initialize dataset and dataloader
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, device)
models_dir = "./models"
os.makedirs(models_dir, exist_ok=True)
audio_output_dir = "./output"
os.makedirs(audio_output_dir, exist_ok=True)
# ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=256, shuffle=True)
train_data_loader = DataLoader(dataset, batch_size=2048, shuffle=True, num_workers=24)
# ========= MODELS =========
# Initialize models and move them to device
generator = SISUGenerator()
discriminator = SISUDiscriminator()
epoch: int = args.epoch
if args.continue_training:
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
elif args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
else:
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_discriminator.pt", map_location=device, weights_only=True))
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
epoch = epoch_from_file["epoch"] + 1
generator = generator.to(device)
discriminator = discriminator.to(device)
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
if args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
# Loss
criterion_g = nn.MSELoss()
criterion_d = nn.BCELoss()
criterion_g = nn.BCEWithLogitsLoss()
criterion_d = nn.BCEWithLogitsLoss()
# Optimizers
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
@ -129,61 +124,78 @@ optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.99
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
models_dir = "models"
os.makedirs(models_dir, exist_ok=True)
def start_training():
generator_epochs = 5000
for generator_epoch in range(generator_epochs):
low_quality_audio = (torch.empty((1)), 1)
high_quality_audio = (torch.empty((1)), 1)
ai_enhanced_audio = (torch.empty((1)), 1)
high_quality_audio = ([torch.empty((1))], 1)
low_quality_audio = ([torch.empty((1))], 1)
ai_enhanced_audio = ([torch.empty((1))], 1)
times_correct = 0
# ========= TRAINING =========
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
# for high_quality_clip, low_quality_clip in train_data_loader:
high_quality_sample = (high_quality_clip[0], high_quality_clip[1])
low_quality_sample = (low_quality_clip[0], low_quality_clip[1])
for training_data in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
## Data structure:
# [[[float..., float..., float...], [float..., float..., float...]], [original_sample_rate, mangled_sample_rate]]
# ========= LABELS =========
batch_size = high_quality_clip[0].size(0)
good_quality_data = training_data[0][0].to(device)
bad_quality_data = training_data[0][1].to(device)
original_sample_rate = training_data[1][0]
mangled_sample_rate = training_data[1][1]
batch_size = good_quality_data.size(0)
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
high_quality_audio = (good_quality_data, original_sample_rate)
low_quality_audio = (bad_quality_data, mangled_sample_rate)
# ========= DISCRIMINATOR =========
discriminator.train()
d_loss = discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
d_loss = discriminator_train(
good_quality_data,
bad_quality_data,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
# ========= GENERATOR =========
generator.train()
#generator_output, combined_loss, adversarial_loss, mfcc_l = generator_train(low_quality_sample, high_quality_sample, real_labels)
generator_output, adversarial_loss = generator_train(low_quality_sample, high_quality_sample, real_labels)
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
bad_quality_data,
good_quality_data,
real_labels,
generator,
discriminator,
criterion_d,
optimizer_g,
device,
mel_transform,
stft_transform,
mfcc_transform
)
if debug:
print(d_loss, adversarial_loss)
scheduler_d.step(d_loss)
scheduler_g.step(adversarial_loss)
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
scheduler_d.step(d_loss.detach())
scheduler_g.step(adversarial_loss.detach())
# ========= SAVE LATEST AUDIO =========
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0])
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0])
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0])
high_quality_audio = (good_quality_data, original_sample_rate)
low_quality_audio = (bad_quality_data, original_sample_rate)
ai_enhanced_audio = (generator_output, original_sample_rate)
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
new_epoch = generator_epoch+epoch
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
if generator_epoch % 10 == 0:
print(f"Saved epoch {new_epoch}!")
torchaudio.save(f"./output/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu(), high_quality_audio[1])
if debug:
print(generator.state_dict().keys())
print(discriminator.state_dict().keys())
torch.save(discriminator.state_dict(), f"{models_dir}/discriminator_epoch_{new_epoch}.pt")
torch.save(generator.state_dict(), f"{models_dir}/generator_epoch_{new_epoch}.pt")
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
torch.save(generator, "models/epoch-5000-generator.pt")

142
training_utils.py Normal file
View File

@ -0,0 +1,142 @@
import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
import torchaudio.transforms as T
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
mfccs_true = mfcc_transform(y_true)
mfccs_pred = mfcc_transform(y_pred)
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len]
loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
return loss
def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
return loss
def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
return loss
def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
loss = torch.mean(norm_diff / (norm_true + eps))
return loss
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
optimizer.zero_grad()
# Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality)
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
with torch.no_grad():
generator_output = generator(low_quality)
discriminator_decision_from_fake = discriminator(generator_output)
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
d_loss = (d_loss_real + d_loss_fake) / 2.0
d_loss.backward()
# Optional: Gradient Clipping (can be helpful)
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer.step()
return d_loss
def generator_train(
low_quality,
high_quality,
real_labels,
generator,
discriminator,
adv_criterion,
g_optimizer,
device,
mel_transform: T.MelSpectrogram,
stft_transform: T.Spectrogram,
mfcc_transform: T.MFCC,
lambda_adv: float = 1.0,
lambda_mel_l1: float = 10.0,
lambda_log_stft: float = 1.0,
lambda_mfcc: float = 1.0
):
g_optimizer.zero_grad()
generator_output = generator(low_quality)
discriminator_decision = discriminator(generator_output)
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
mel_l1 = 0.0
log_stft_l1 = 0.0
mfcc_l = 0.0
# Calculate Mel L1 Loss if weight is positive
if lambda_mel_l1 > 0:
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality, generator_output)
# Calculate Log STFT L1 Loss if weight is positive
if lambda_log_stft > 0:
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality, generator_output)
# Calculate MFCC Loss if weight is positive
if lambda_mfcc > 0:
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality, generator_output)
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
combined_loss = (lambda_adv * adversarial_loss) + \
(lambda_mel_l1 * mel_l1_tensor) + \
(lambda_log_stft * log_stft_l1_tensor) + \
(lambda_mfcc * mfcc_l_tensor)
combined_loss.backward()
# Optional: Gradient Clipping
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
g_optimizer.step()
# 6. Return values for logging
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor