Files
SISU/utils/TrainingTools.py

61 lines
1.8 KiB
Python

import torch
# In case if needed again...
# from utils.MultiResolutionSTFTLoss import MultiResolutionSTFTLoss
#
# stft_loss_fn = MultiResolutionSTFTLoss(
# fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240]
# )
def signal_mae(input_one: torch.Tensor, input_two: torch.Tensor) -> torch.Tensor:
absolute_difference = torch.abs(input_one - input_two)
return torch.mean(absolute_difference)
def discriminator_train(
high_quality,
low_quality,
high_labels,
low_labels,
discriminator,
generator,
criterion,
):
decision_high = discriminator(high_quality)
d_loss_high = criterion(decision_high, high_labels)
# print(f"Is this real?: {discriminator_decision_from_real} | {d_loss_real}")
decision_low = discriminator(low_quality)
d_loss_low = criterion(decision_low, low_labels)
# print(f"Is this real?: {discriminator_decision_from_fake} | {d_loss_fake}")
with torch.no_grad():
generator_quality = generator(low_quality)
decision_gen = discriminator(generator_quality)
d_loss_gen = criterion(decision_gen, low_labels)
noise = torch.rand_like(high_quality) * 0.08
decision_noise = discriminator(high_quality + noise)
d_loss_noise = criterion(decision_noise, low_labels)
d_loss = (d_loss_high + d_loss_low + d_loss_gen + d_loss_noise) / 4.0
return d_loss
def generator_train(
low_quality, high_quality, real_labels, generator, discriminator, adv_criterion
):
generator_output = generator(low_quality)
discriminator_decision = discriminator(generator_output)
adversarial_loss = adv_criterion(discriminator_decision, real_labels)
# Signal similarity
similarity_loss = signal_mae(generator_output, high_quality)
combined_loss = adversarial_loss + (similarity_loss * 100)
return combined_loss, adversarial_loss