8 Commits
jax ... rt-test

Author SHA1 Message Date
3f23242d6f ⚗️ | Added some stupid ways for training + some makeup 2025-10-04 22:38:11 +03:00
0bc8fc2792 | Made training bit... spicier. 2025-09-10 19:52:53 +03:00
ff38cefdd3 🐛 | Fix loading wrong model. 2025-06-08 18:14:31 +03:00
03fdc050cc | Made training bit faster. 2025-06-07 20:43:52 +03:00
2ded03713d | Added app.py script so the model can be used. 2025-06-06 22:10:06 +03:00
a135c765da 🐛 | Misc fixes... 2025-05-05 00:50:56 +03:00
b1e18443ba | Added support for .mp3 and .flac loading... 2025-05-04 23:56:14 +03:00
660b41aef8 :albemic: | Real-time testing... 2025-05-04 22:48:57 +03:00
13 changed files with 658 additions and 423 deletions

View File

@@ -1,18 +1,97 @@
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
def stereo_tensor_to_mono(waveform):
def stereo_tensor_to_mono(waveform: torch.Tensor) -> torch.Tensor:
"""
Convert stereo (C, N) to mono (1, N). Ensures a channel dimension.
"""
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0) # (N,) -> (1, N)
if waveform.shape[0] > 1: if waveform.shape[0] > 1:
# Average across channels mono_waveform = torch.mean(waveform, dim=0, keepdim=True) # (1, N)
mono_waveform = torch.mean(waveform, dim=0, keepdim=True)
else: else:
# Already mono
mono_waveform = waveform mono_waveform = waveform
return mono_waveform return mono_waveform
def stretch_tensor(tensor, target_length):
scale_factor = target_length / tensor.size(1)
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False) def stretch_tensor(tensor: torch.Tensor, target_length: int) -> torch.Tensor:
"""
Stretch audio along time dimension to target_length.
Input assumed (1, N). Returns (1, target_length).
"""
if tensor.dim() == 1:
tensor = tensor.unsqueeze(0) # ensure (1, N)
return tensor tensor = tensor.unsqueeze(0) # (1, 1, N) for interpolate
stretched = F.interpolate(
tensor, size=target_length, mode="linear", align_corners=False
)
return stretched.squeeze(0) # back to (1, target_length)
def pad_tensor(audio_tensor: torch.Tensor, target_length: int = 128) -> torch.Tensor:
"""
Pad to fixed length. Input assumed (1, N). Returns (1, target_length).
"""
if audio_tensor.dim() == 1:
audio_tensor = audio_tensor.unsqueeze(0)
current_length = audio_tensor.shape[-1]
if current_length < target_length:
padding_needed = target_length - current_length
padding_tuple = (0, padding_needed)
padded_audio_tensor = F.pad(
audio_tensor, padding_tuple, mode="constant", value=0
)
else:
padded_audio_tensor = audio_tensor[..., :target_length] # crop if too long
return padded_audio_tensor
def split_audio(
audio_tensor: torch.Tensor, chunk_size: int = 128
) -> list[torch.Tensor]:
"""
Split into chunks of (1, chunk_size).
"""
if not isinstance(chunk_size, int) or chunk_size <= 0:
raise ValueError("chunk_size must be a positive integer.")
if audio_tensor.dim() == 1:
audio_tensor = audio_tensor.unsqueeze(0)
num_samples = audio_tensor.shape[-1]
if num_samples == 0:
return []
chunks = list(torch.split(audio_tensor, chunk_size, dim=-1))
return chunks
def reconstruct_audio(chunks: list[torch.Tensor]) -> torch.Tensor:
"""
Reconstruct audio from chunks. Returns (1, N).
"""
if not chunks:
return torch.empty(1, 0)
chunks = [c if c.dim() == 2 else c.unsqueeze(0) for c in chunks]
try:
reconstructed_tensor = torch.cat(chunks, dim=-1)
except RuntimeError as e:
raise RuntimeError(
f"Failed to concatenate audio chunks. Ensure chunks have compatible shapes "
f"for concatenation along dim -1. Original error: {e}"
)
return reconstructed_tensor
def normalize(audio_tensor: torch.Tensor, eps: float = 1e-8) -> torch.Tensor:
max_val = torch.max(torch.abs(audio_tensor))
if max_val < eps:
return audio_tensor # silence, skip normalization
return audio_tensor / max_val

0
__init__.py Normal file
View File

97
app.py Normal file
View File

@@ -0,0 +1,97 @@
import argparse
import torch
import torchaudio
import torchcodec
import tqdm
import AudioUtils
from generator import SISUGenerator
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--model", type=str, help="Model to use for upscaling")
parser.add_argument(
"--clip_length",
type=int,
default=16384,
help="Internal clip length, leave unspecified if unsure",
)
parser.add_argument(
"--sample_rate", type=int, default=44100, help="Output clip sample rate"
)
parser.add_argument(
"--bitrate",
type=int,
default=192000,
help="Output clip bitrate",
)
parser.add_argument("-i", "--input", type=str, help="Input audio file")
parser.add_argument("-o", "--output", type=str, help="Output audio file")
args = parser.parse_args()
if args.sample_rate < 8000:
print(
"Sample rate cannot be lower than 8000! (44100 is recommended for base models)"
)
exit()
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
generator = SISUGenerator().to(device)
generator = torch.compile(generator)
models_dir = args.model
clip_length = args.clip_length
input_audio = args.input
output_audio = args.output
if models_dir:
ckpt = torch.load(models_dir, map_location=device)
generator.load_state_dict(ckpt["G"])
else:
print(
"Generator model (--model) isn't specified. Do you have the trained model? If not, you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)"
)
def start():
# To Mono!
decoder = torchcodec.decoders.AudioDecoder(input_audio)
decoded_samples = decoder.get_all_samples()
audio = decoded_samples.data
original_sample_rate = decoded_samples.sample_rate
audio = AudioUtils.stereo_tensor_to_mono(audio)
audio = AudioUtils.normalize(audio)
resample_transform = torchaudio.transforms.Resample(
original_sample_rate, args.sample_rate
)
audio = resample_transform(audio)
splitted_audio = AudioUtils.split_audio(audio, clip_length)
splitted_audio_on_device = [t.to(device) for t in splitted_audio]
processed_audio = []
for clip in tqdm.tqdm(splitted_audio_on_device, desc="Processing..."):
processed_audio.append(generator(clip))
reconstructed_audio = AudioUtils.reconstruct_audio(processed_audio)
print(f"Saving {output_audio}!")
torchaudio.save_with_torchcodec(
uri=output_audio,
src=reconstructed_audio,
sample_rate=args.sample_rate,
channels_first=True,
compression=args.bitrate,
)
start()

110
data.py
View File

@@ -1,53 +1,79 @@
from torch.utils.data import Dataset
import torch.nn.functional as F
import torch
import torchaudio
import os import os
import random import random
import torchaudio.transforms as T
import torchaudio
import torchcodec.decoders as decoders
import tqdm
from torch.utils.data import Dataset
import AudioUtils import AudioUtils
class AudioDataset(Dataset): class AudioDataset(Dataset):
audio_sample_rates = [11025] audio_sample_rates = [11025]
MAX_LENGTH = 44100 # Define your desired maximum length here
def __init__(self, input_dir, device): def __init__(self, input_dir, clip_length: int = 8000, normalize: bool = True):
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')] self.clip_length = clip_length
self.device = device self.normalize = normalize
input_files = [
os.path.join(input_dir, f)
for f in os.listdir(input_dir)
if os.path.isfile(os.path.join(input_dir, f))
and f.lower().endswith((".wav", ".mp3", ".flac"))
]
data = []
for audio_clip in tqdm.tqdm(
input_files, desc=f"Processing {len(input_files)} audio file(s)"
):
decoder = decoders.AudioDecoder(audio_clip)
decoded_samples = decoder.get_all_samples()
audio = decoded_samples.data.float() # ensure float32
original_sample_rate = decoded_samples.sample_rate
audio = AudioUtils.stereo_tensor_to_mono(audio)
if normalize:
audio = AudioUtils.normalize(audio)
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(
original_sample_rate, mangled_sample_rate
)
resample_transform_high = torchaudio.transforms.Resample(
mangled_sample_rate, original_sample_rate
)
low_audio = resample_transform_high(resample_transform_low(audio))
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length)
splitted_low_quality_audio = AudioUtils.split_audio(low_audio, clip_length)
if not splitted_high_quality_audio or not splitted_low_quality_audio:
continue # skip empty or invalid clips
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(
splitted_high_quality_audio[-1], clip_length
)
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(
splitted_low_quality_audio[-1], clip_length
)
for high_quality_data, low_quality_data in zip(
splitted_high_quality_audio, splitted_low_quality_audio
):
data.append(
(
(high_quality_data, low_quality_data),
(original_sample_rate, mangled_sample_rate),
)
)
self.audio_data = data
def __len__(self): def __len__(self):
return len(self.input_files) return len(self.audio_data)
def __getitem__(self, idx): def __getitem__(self, idx):
# Load high-quality audio return self.audio_data[idx]
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
# Generate low-quality audio with random downsampling
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
low_quality_audio = resample_transform_low(high_quality_audio)
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
low_quality_audio = resample_transform_high(low_quality_audio)
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio)
# Pad or truncate high-quality audio
if high_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - high_quality_audio.shape[1]
high_quality_audio = F.pad(high_quality_audio, (0, padding))
elif high_quality_audio.shape[1] > self.MAX_LENGTH:
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH]
# Pad or truncate low-quality audio
if low_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - low_quality_audio.shape[1]
low_quality_audio = F.pad(low_quality_audio, (0, padding))
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
high_quality_audio = high_quality_audio.to(self.device)
low_quality_audio = low_quality_audio.to(self.device)
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)

View File

@@ -1,8 +1,16 @@
import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.utils as utils import torch.nn.utils as utils
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True):
def discriminator_block(
in_channels,
out_channels,
kernel_size=3,
stride=1,
dilation=1,
spectral_norm=True,
use_instance_norm=True,
):
padding = (kernel_size // 2) * dilation padding = (kernel_size // 2) * dilation
conv_layer = nn.Conv1d( conv_layer = nn.Conv1d(
in_channels, in_channels,
@@ -10,7 +18,7 @@ def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dila
kernel_size=kernel_size, kernel_size=kernel_size,
stride=stride, stride=stride,
dilation=dilation, dilation=dilation,
padding=padding padding=padding,
) )
if spectral_norm: if spectral_norm:
@@ -24,6 +32,7 @@ def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dila
return nn.Sequential(*layers) return nn.Sequential(*layers)
class AttentionBlock(nn.Module): class AttentionBlock(nn.Module):
def __init__(self, channels): def __init__(self, channels):
super(AttentionBlock, self).__init__() super(AttentionBlock, self).__init__()
@@ -31,27 +40,30 @@ class AttentionBlock(nn.Module):
nn.Conv1d(channels, channels // 4, kernel_size=1), nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(inplace=True), nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1), nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid() nn.Sigmoid(),
) )
def forward(self, x): def forward(self, x):
attention_weights = self.attention(x) attention_weights = self.attention(x)
return x * attention_weights return x * attention_weights
class SISUDiscriminator(nn.Module): class SISUDiscriminator(nn.Module):
def __init__(self, base_channels=16): def __init__(self, layers=32):
super(SISUDiscriminator, self).__init__() super(SISUDiscriminator, self).__init__()
layers = base_channels
self.model = nn.Sequential( self.model = nn.Sequential(
discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False), discriminator_block(1, layers, kernel_size=7, stride=1),
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True), discriminator_block(layers, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True), discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2),
AttentionBlock(layers * 4), AttentionBlock(layers * 4),
discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True), discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True), discriminator_block(layers * 8, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True), discriminator_block(
discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True), layers * 2,
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False) 1,
spectral_norm=False,
use_instance_norm=False,
),
) )
self.global_avg_pool = nn.AdaptiveAvgPool1d(1) self.global_avg_pool = nn.AdaptiveAvgPool1d(1)

View File

@@ -1,28 +0,0 @@
import json
filepath = "my_data.json"
def write_data(filepath, data):
try:
with open(filepath, 'w') as f:
json.dump(data, f, indent=4) # Use indent for pretty formatting
print(f"Data written to '{filepath}'")
except Exception as e:
print(f"Error writing to file: {e}")
def read_data(filepath):
try:
with open(filepath, 'r') as f:
data = json.load(f)
print(f"Data read from '{filepath}'")
return data
except FileNotFoundError:
print(f"File not found: {filepath}")
return None
except json.JSONDecodeError:
print(f"Error decoding JSON from file: {filepath}")
return None
except Exception as e:
print(f"Error reading from file: {e}")
return None

View File

@@ -1,6 +1,7 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1): def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
return nn.Sequential( return nn.Sequential(
nn.Conv1d( nn.Conv1d(
@@ -8,29 +9,32 @@ def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
out_channels, out_channels,
kernel_size=kernel_size, kernel_size=kernel_size,
dilation=dilation, dilation=dilation,
padding=(kernel_size // 2) * dilation padding=(kernel_size // 2) * dilation,
), ),
nn.InstanceNorm1d(out_channels), nn.InstanceNorm1d(out_channels),
nn.PReLU() nn.PReLU(),
) )
class AttentionBlock(nn.Module): class AttentionBlock(nn.Module):
""" """
Simple Channel Attention Block. Learns to weight channels based on their importance. Simple Channel Attention Block. Learns to weight channels based on their importance.
""" """
def __init__(self, channels): def __init__(self, channels):
super(AttentionBlock, self).__init__() super(AttentionBlock, self).__init__()
self.attention = nn.Sequential( self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1), nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(inplace=True), nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1), nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid() nn.Sigmoid(),
) )
def forward(self, x): def forward(self, x):
attention_weights = self.attention(x) attention_weights = self.attention(x)
return x * attention_weights return x * attention_weights
class ResidualInResidualBlock(nn.Module): class ResidualInResidualBlock(nn.Module):
def __init__(self, channels, num_convs=3): def __init__(self, channels, num_convs=3):
super(ResidualInResidualBlock, self).__init__() super(ResidualInResidualBlock, self).__init__()
@@ -47,8 +51,9 @@ class ResidualInResidualBlock(nn.Module):
x = self.attention(x) x = self.attention(x)
return x + residual return x + residual
class SISUGenerator(nn.Module): class SISUGenerator(nn.Module):
def __init__(self, channels=16, num_rirb=4, alpha=1.0): def __init__(self, channels=16, num_rirb=4, alpha=1):
super(SISUGenerator, self).__init__() super(SISUGenerator, self).__init__()
self.alpha = alpha self.alpha = alpha
@@ -62,7 +67,9 @@ class SISUGenerator(nn.Module):
*[ResidualInResidualBlock(channels) for _ in range(num_rirb)] *[ResidualInResidualBlock(channels) for _ in range(num_rirb)]
) )
self.final_layer = nn.Conv1d(channels, 1, kernel_size=3, padding=1) self.final_layer = nn.Sequential(
nn.Conv1d(channels, 1, kernel_size=3, padding=1), nn.Tanh()
)
def forward(self, x): def forward(self, x):
residual_input = x residual_input = x
@@ -71,4 +78,4 @@ class SISUGenerator(nn.Module):
learned_residual = self.final_layer(x_rirb_out) learned_residual = self.final_layer(x_rirb_out)
output = residual_input + self.alpha * learned_residual output = residual_input + self.alpha * learned_residual
return output return torch.tanh(output)

View File

@@ -1,12 +0,0 @@
filelock==3.16.1
fsspec==2024.10.0
Jinja2==3.1.4
MarkupSafe==2.1.5
mpmath==1.3.0
networkx==3.4.2
numpy==2.2.3
pillow==11.0.0
setuptools==70.2.0
sympy==1.13.3
tqdm==4.67.1
typing_extensions==4.12.2

View File

@@ -1,194 +1,245 @@
import argparse
import os
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.optim as optim import torch.optim as optim
import torch.nn.functional as F
import torchaudio
import tqdm import tqdm
from accelerate import Accelerator
from torch.utils.data import DataLoader, DistributedSampler
import argparse
import math
import os
from torch.utils.data import random_split
from torch.utils.data import DataLoader
import AudioUtils
from data import AudioDataset from data import AudioDataset
from generator import SISUGenerator
from discriminator import SISUDiscriminator from discriminator import SISUDiscriminator
from generator import SISUGenerator
from utils.TrainingTools import discriminator_train, generator_train
from training_utils import discriminator_train, generator_train # ---------------------------
import file_utils as Data # Argument parsing
# ---------------------------
import torchaudio.transforms as T parser = argparse.ArgumentParser(description="Training script (safer defaults)")
parser.add_argument("--resume", action="store_true", help="Resume training")
# Init script argument parser parser.add_argument(
parser = argparse.ArgumentParser(description="Training script") "--epochs", type=int, default=5000, help="Number of training epochs"
parser.add_argument("--generator", type=str, default=None, )
help="Path to the generator model file") parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
parser.add_argument("--discriminator", type=str, default=None, parser.add_argument("--num_workers", type=int, default=2, help="DataLoader num_workers")
help="Path to the discriminator model file") parser.add_argument("--debug", action="store_true", help="Print debug logs")
parser.add_argument("--device", type=str, default="cpu", help="Select device") parser.add_argument(
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning") "--no_pin_memory", action="store_true", help="Disable pin_memory even on CUDA"
parser.add_argument("--debug", action="store_true", help="Print debug logs") )
parser.add_argument("--continue_training", action="store_true", help="Continue training using temp_generator and temp_discriminator models")
args = parser.parse_args() args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu") # ---------------------------
print(f"Using device: {device}") # Init accelerator
# ---------------------------
# Parameters accelerator = Accelerator(mixed_precision="bf16")
sample_rate = 44100
n_fft = 2048
hop_length = 256
win_length = n_fft
n_mels = 128
n_mfcc = 20 # If using MFCC
mfcc_transform = T.MFCC(
sample_rate,
n_mfcc,
melkwargs = {'n_fft': n_fft, 'hop_length': hop_length}
).to(device)
mel_transform = T.MelSpectrogram(
sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length,
win_length=win_length, n_mels=n_mels, power=1.0 # Magnitude Mel
).to(device)
stft_transform = T.Spectrogram(
n_fft=n_fft, win_length=win_length, hop_length=hop_length
).to(device)
debug = args.debug
# Initialize dataset and dataloader
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, device)
models_dir = "models"
os.makedirs(models_dir, exist_ok=True)
audio_output_dir = "output"
os.makedirs(audio_output_dir, exist_ok=True)
# ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
# ========= MODELS =========
# ---------------------------
# Models
# ---------------------------
generator = SISUGenerator() generator = SISUGenerator()
discriminator = SISUDiscriminator() discriminator = SISUDiscriminator()
epoch: int = args.epoch accelerator.print("🔨 | Compiling models...")
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
if args.continue_training: generator = torch.compile(generator)
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True)) discriminator = torch.compile(discriminator)
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
epoch = epoch_from_file["epoch"] + 1
else:
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
if args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
generator = generator.to(device) accelerator.print("✅ | Compiling done!")
discriminator = discriminator.to(device)
# ---------------------------
# Dataset / DataLoader
# ---------------------------
accelerator.print("📊 | Fetching dataset...")
dataset = AudioDataset("./dataset")
sampler = DistributedSampler(dataset) if accelerator.num_processes > 1 else None
pin_memory = torch.cuda.is_available() and not args.no_pin_memory
train_loader = DataLoader(
dataset,
sampler=sampler,
batch_size=args.batch_size,
shuffle=(sampler is None),
num_workers=args.num_workers,
pin_memory=pin_memory,
persistent_workers=pin_memory,
)
if not train_loader or not train_loader.batch_size or train_loader.batch_size == 0:
accelerator.print("🪹 | There is no data to train with! Exiting...")
exit()
loader_batch_size = train_loader.batch_size
accelerator.print("✅ | Dataset fetched!")
# ---------------------------
# Losses / Optimizers / Scalers
# ---------------------------
optimizer_g = optim.AdamW(
generator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
)
optimizer_d = optim.AdamW(
discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
)
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_g, mode="min", factor=0.5, patience=5
)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_d, mode="min", factor=0.5, patience=5
)
# Loss
criterion_g = nn.BCEWithLogitsLoss() criterion_g = nn.BCEWithLogitsLoss()
criterion_d = nn.BCEWithLogitsLoss() criterion_d = nn.MSELoss()
# Optimizers # ---------------------------
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999)) # Prepare accelerator
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999)) # ---------------------------
# Scheduler generator, discriminator, optimizer_g, optimizer_d, train_loader = accelerator.prepare(
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5) generator, discriminator, optimizer_g, optimizer_d, train_loader
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5) )
def start_training(): # ---------------------------
generator_epochs = 5000 # Checkpoint helpers
for generator_epoch in range(generator_epochs): # ---------------------------
low_quality_audio = (torch.empty((1)), 1) models_dir = "./models"
high_quality_audio = (torch.empty((1)), 1) os.makedirs(models_dir, exist_ok=True)
ai_enhanced_audio = (torch.empty((1)), 1)
times_correct = 0
# ========= TRAINING =========
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
# for high_quality_clip, low_quality_clip in train_data_loader:
high_quality_sample = (high_quality_clip[0], high_quality_clip[1])
low_quality_sample = (low_quality_clip[0], low_quality_clip[1])
# ========= LABELS =========
batch_size = high_quality_clip[0].size(0)
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
# ========= DISCRIMINATOR =========
discriminator.train()
d_loss = discriminator_train(
high_quality_sample,
low_quality_sample,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
# ========= GENERATOR =========
generator.train()
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
low_quality_sample,
high_quality_sample,
real_labels,
generator,
discriminator,
criterion_d,
optimizer_g,
device,
mel_transform,
stft_transform,
mfcc_transform
)
if debug:
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
scheduler_d.step(d_loss.detach())
scheduler_g.step(adversarial_loss.detach())
# ========= SAVE LATEST AUDIO =========
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0])
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0])
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0])
new_epoch = generator_epoch+epoch
if generator_epoch % 25 == 0:
print(f"Saved epoch {new_epoch}!")
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
#if debug:
# print(generator.state_dict().keys())
# print(discriminator.state_dict().keys())
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
torch.save(discriminator, "models/epoch-5000-discriminator.pt") def save_ckpt(path, epoch):
torch.save(generator, "models/epoch-5000-generator.pt") accelerator.wait_for_everyone()
print("Training complete!") if accelerator.is_main_process:
accelerator.save(
{
"epoch": epoch,
"G": accelerator.unwrap_model(generator).state_dict(),
"D": accelerator.unwrap_model(discriminator).state_dict(),
"optG": optimizer_g.state_dict(),
"optD": optimizer_d.state_dict(),
"schedG": scheduler_g.state_dict(),
"schedD": scheduler_d.state_dict(),
},
path,
)
start_training()
start_epoch = 0
if args.resume:
ckpt_path = os.path.join(models_dir, "last.pt")
ckpt = torch.load(ckpt_path)
accelerator.unwrap_model(generator).load_state_dict(ckpt["G"])
accelerator.unwrap_model(discriminator).load_state_dict(ckpt["D"])
optimizer_g.load_state_dict(ckpt["optG"])
optimizer_d.load_state_dict(ckpt["optD"])
scheduler_g.load_state_dict(ckpt["schedG"])
scheduler_d.load_state_dict(ckpt["schedD"])
start_epoch = ckpt.get("epoch", 1)
accelerator.print(f"🔁 | Resumed from epoch {start_epoch}!")
real_buf = torch.full(
(loader_batch_size, 1), 1, device=accelerator.device, dtype=torch.float32
)
fake_buf = torch.zeros(
(loader_batch_size, 1), device=accelerator.device, dtype=torch.float32
)
accelerator.print("🏋️ | Started training...")
try:
for epoch in range(start_epoch, args.epochs):
generator.train()
discriminator.train()
running_d, running_g, steps = 0.0, 0.0, 0
for i, (
(high_quality, low_quality),
(high_sample_rate, low_sample_rate),
) in enumerate(tqdm.tqdm(train_loader, desc=f"Epoch {epoch}")):
batch_size = high_quality.size(0)
real_labels = real_buf[:batch_size].to(accelerator.device)
fake_labels = fake_buf[:batch_size].to(accelerator.device)
# --- Discriminator ---
optimizer_d.zero_grad(set_to_none=True)
with accelerator.autocast():
d_loss = discriminator_train(
high_quality,
low_quality,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
)
accelerator.backward(d_loss)
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), 1)
optimizer_d.step()
# --- Generator ---
optimizer_g.zero_grad(set_to_none=True)
with accelerator.autocast():
g_total, g_adv = generator_train(
low_quality,
high_quality,
real_labels,
generator,
discriminator,
criterion_d,
)
accelerator.backward(g_total)
torch.nn.utils.clip_grad_norm_(generator.parameters(), 1)
optimizer_g.step()
d_val = accelerator.gather(d_loss.detach()).mean()
g_val = accelerator.gather(g_total.detach()).mean()
if torch.isfinite(d_val):
running_d += d_val.item()
else:
accelerator.print(
f"🫥 | NaN in discriminator loss at step {i}, skipping update."
)
if torch.isfinite(g_val):
running_g += g_val.item()
else:
accelerator.print(
f"🫥 | NaN in generator loss at step {i}, skipping update."
)
steps += 1
# epoch averages & schedulers
if steps == 0:
accelerator.print("🪹 | No steps in epoch (empty dataloader?). Exiting.")
break
mean_d = running_d / steps
mean_g = running_g / steps
scheduler_d.step(mean_d)
scheduler_g.step(mean_g)
save_ckpt(os.path.join(models_dir, "last.pt"), epoch)
accelerator.print(f"🤝 | Epoch {epoch} done | D {mean_d:.4f} | G {mean_g:.4f}")
except Exception:
try:
save_ckpt(os.path.join(models_dir, "crash_last.pt"), epoch)
accelerator.print(f"💾 | Saved crash checkpoint for epoch {epoch}")
except Exception as e:
accelerator.print("😬 | Failed saving crash checkpoint:", e)
raise
accelerator.print("🏁 | Training finished.")

View File

@@ -1,144 +0,0 @@
import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
import torchaudio.transforms as T
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
mfccs_true = mfcc_transform(y_true)
mfccs_pred = mfcc_transform(y_pred)
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len]
loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
# Ensure same time dimension length (due to potential framing differences)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
# L1 Loss (Mean Absolute Error)
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
return loss
def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
return loss
def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
return loss
def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
loss = torch.mean(norm_diff / (norm_true + eps))
return loss
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
optimizer.zero_grad()
# Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality[0])
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
with torch.no_grad():
generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output)
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
d_loss = (d_loss_real + d_loss_fake) / 2.0
d_loss.backward()
# Optional: Gradient Clipping (can be helpful)
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer.step()
return d_loss
def generator_train(
low_quality,
high_quality,
real_labels,
generator,
discriminator,
adv_criterion,
g_optimizer,
device,
mel_transform: T.MelSpectrogram,
stft_transform: T.Spectrogram,
mfcc_transform: T.MFCC,
lambda_adv: float = 1.0,
lambda_mel_l1: float = 10.0,
lambda_log_stft: float = 1.0,
lambda_mfcc: float = 1.0
):
g_optimizer.zero_grad()
generator_output = generator(low_quality[0])
discriminator_decision = discriminator(generator_output)
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
mel_l1 = 0.0
log_stft_l1 = 0.0
mfcc_l = 0.0
# Calculate Mel L1 Loss if weight is positive
if lambda_mel_l1 > 0:
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output)
# Calculate Log STFT L1 Loss if weight is positive
if lambda_log_stft > 0:
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality[0], generator_output)
# Calculate MFCC Loss if weight is positive
if lambda_mfcc > 0:
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality[0], generator_output)
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
combined_loss = (lambda_adv * adversarial_loss) + \
(lambda_mel_l1 * mel_l1_tensor) + \
(lambda_log_stft * log_stft_l1_tensor) + \
(lambda_mfcc * mfcc_l_tensor)
combined_loss.backward()
# Optional: Gradient Clipping
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
g_optimizer.step()
# 6. Return values for logging
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor

View File

@@ -0,0 +1,87 @@
from typing import Dict, List
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio.transforms as T
class MultiResolutionSTFTLoss(nn.Module):
"""
Multi-resolution STFT loss.
Combines spectral convergence loss and log-magnitude loss
across multiple STFT resolutions.
"""
def __init__(
self,
fft_sizes: List[int] = [1024, 2048, 512],
hop_sizes: List[int] = [120, 240, 50],
win_lengths: List[int] = [600, 1200, 240],
eps: float = 1e-7,
):
super().__init__()
self.eps = eps
self.n_resolutions = len(fft_sizes)
self.stft_transforms = nn.ModuleList()
for n_fft, hop_len, win_len in zip(fft_sizes, hop_sizes, win_lengths):
window = torch.hann_window(win_len)
stft = T.Spectrogram(
n_fft=n_fft,
hop_length=hop_len,
win_length=win_len,
window_fn=lambda _: window,
power=None, # Keep complex output
center=True,
pad_mode="reflect",
normalized=False,
)
self.stft_transforms.append(stft)
def forward(
self, y_true: torch.Tensor, y_pred: torch.Tensor
) -> Dict[str, torch.Tensor]:
"""
Args:
y_true: (B, T) or (B, 1, T) waveform
y_pred: (B, T) or (B, 1, T) waveform
"""
# Ensure correct shape (B, T)
if y_true.dim() == 3 and y_true.size(1) == 1:
y_true = y_true.squeeze(1)
if y_pred.dim() == 3 and y_pred.size(1) == 1:
y_pred = y_pred.squeeze(1)
sc_loss = 0.0
mag_loss = 0.0
for stft in self.stft_transforms:
stft = stft.to(y_pred.device)
# Complex STFTs: (B, F, T, 2)
stft_true = stft(y_true)
stft_pred = stft(y_pred)
# Magnitudes
stft_mag_true = torch.abs(stft_true)
stft_mag_pred = torch.abs(stft_pred)
# --- Spectral Convergence Loss ---
norm_true = torch.linalg.norm(stft_mag_true, dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, dim=(-2, -1))
sc_loss += torch.mean(norm_diff / (norm_true + self.eps))
# --- Log STFT Magnitude Loss ---
mag_loss += F.l1_loss(
torch.log(stft_mag_pred + self.eps),
torch.log(stft_mag_true + self.eps),
)
# Average across resolutions
sc_loss /= self.n_resolutions
mag_loss /= self.n_resolutions
total_loss = sc_loss + mag_loss
return {"total": total_loss, "sc": sc_loss, "mag": mag_loss}

60
utils/TrainingTools.py Normal file
View File

@@ -0,0 +1,60 @@
import torch
# In case if needed again...
# from utils.MultiResolutionSTFTLoss import MultiResolutionSTFTLoss
#
# stft_loss_fn = MultiResolutionSTFTLoss(
# fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240]
# )
def signal_mae(input_one: torch.Tensor, input_two: torch.Tensor) -> torch.Tensor:
absolute_difference = torch.abs(input_one - input_two)
return torch.mean(absolute_difference)
def discriminator_train(
high_quality,
low_quality,
high_labels,
low_labels,
discriminator,
generator,
criterion,
):
decision_high = discriminator(high_quality)
d_loss_high = criterion(decision_high, high_labels)
# print(f"Is this real?: {discriminator_decision_from_real} | {d_loss_real}")
decision_low = discriminator(low_quality)
d_loss_low = criterion(decision_low, low_labels)
# print(f"Is this real?: {discriminator_decision_from_fake} | {d_loss_fake}")
with torch.no_grad():
generator_quality = generator(low_quality)
decision_gen = discriminator(generator_quality)
d_loss_gen = criterion(decision_gen, low_labels)
noise = torch.rand_like(high_quality) * 0.08
decision_noise = discriminator(high_quality + noise)
d_loss_noise = criterion(decision_noise, low_labels)
d_loss = (d_loss_high + d_loss_low + d_loss_gen + d_loss_noise) / 4.0
return d_loss
def generator_train(
low_quality, high_quality, real_labels, generator, discriminator, adv_criterion
):
generator_output = generator(low_quality)
discriminator_decision = discriminator(generator_output)
adversarial_loss = adv_criterion(discriminator_decision, real_labels)
# Signal similarity
similarity_loss = signal_mae(generator_output, high_quality)
combined_loss = adversarial_loss + (similarity_loss * 100)
return combined_loss, adversarial_loss

0
utils/__init__.py Normal file
View File