22 Commits

Author SHA1 Message Date
3f23242d6f ⚗️ | Added some stupid ways for training + some makeup 2025-10-04 22:38:11 +03:00
0bc8fc2792 | Made training bit... spicier. 2025-09-10 19:52:53 +03:00
ff38cefdd3 🐛 | Fix loading wrong model. 2025-06-08 18:14:31 +03:00
03fdc050cc | Made training bit faster. 2025-06-07 20:43:52 +03:00
2ded03713d | Added app.py script so the model can be used. 2025-06-06 22:10:06 +03:00
a135c765da 🐛 | Misc fixes... 2025-05-05 00:50:56 +03:00
b1e18443ba | Added support for .mp3 and .flac loading... 2025-05-04 23:56:14 +03:00
660b41aef8 :albemic: | Real-time testing... 2025-05-04 22:48:57 +03:00
d70c86c257 | Implemented MFCC and STFT. 2025-04-26 17:03:28 +03:00
c04b072de6 | Added smarter ways that would've been needed from the begining. 2025-04-16 17:08:13 +03:00
b6d16e4f11 ♻️ | Restructured procject code. 2025-04-14 17:51:34 +03:00
nsiltala
3936b6c160 🐛 | Fixed NVIDIA training... again. 2025-04-07 14:49:07 +03:00
fbcd5803b8 🐛 | Fixed training on CPU and NVIDIA hardware. 2025-04-07 02:14:06 +03:00
9394bc6c5a :albemic: | Fat architecture. Hopefully better results. 2025-04-06 00:05:43 +03:00
f928d8c2cf :albemic: | More tests. 2025-03-25 21:51:29 +02:00
54338e55a9 :albemic: | Tests. 2025-03-25 19:50:51 +02:00
7e1c7e935a :albemic: | Experimenting with other model layouts. 2025-03-15 18:01:19 +02:00
416500f7fc | Removed/Updated dependencies. 2025-02-26 20:15:30 +02:00
8332b0df2d | Added ability to set epoch. 2025-02-26 19:36:43 +02:00
741dcce7b4 ⚗️ | Increase discriminator size and implement mfcc_loss for generator. 2025-02-23 13:52:01 +02:00
fb7b624c87 ⚗️ | Experimenting with very small model. 2025-02-10 12:44:42 +02:00
0790a0d3da ⚗️ | Experimenting with smaller architecture. 2025-01-25 16:48:10 +02:00
12 changed files with 735 additions and 249 deletions

View File

@@ -1,18 +1,97 @@
import torch
import torch.nn.functional as F
def stereo_tensor_to_mono(waveform):
def stereo_tensor_to_mono(waveform: torch.Tensor) -> torch.Tensor:
"""
Convert stereo (C, N) to mono (1, N). Ensures a channel dimension.
"""
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0) # (N,) -> (1, N)
if waveform.shape[0] > 1:
# Average across channels
mono_waveform = torch.mean(waveform, dim=0, keepdim=True)
mono_waveform = torch.mean(waveform, dim=0, keepdim=True) # (1, N)
else:
# Already mono
mono_waveform = waveform
return mono_waveform
def stretch_tensor(tensor, target_length):
scale_factor = target_length / tensor.size(1)
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
def stretch_tensor(tensor: torch.Tensor, target_length: int) -> torch.Tensor:
"""
Stretch audio along time dimension to target_length.
Input assumed (1, N). Returns (1, target_length).
"""
if tensor.dim() == 1:
tensor = tensor.unsqueeze(0) # ensure (1, N)
return tensor
tensor = tensor.unsqueeze(0) # (1, 1, N) for interpolate
stretched = F.interpolate(
tensor, size=target_length, mode="linear", align_corners=False
)
return stretched.squeeze(0) # back to (1, target_length)
def pad_tensor(audio_tensor: torch.Tensor, target_length: int = 128) -> torch.Tensor:
"""
Pad to fixed length. Input assumed (1, N). Returns (1, target_length).
"""
if audio_tensor.dim() == 1:
audio_tensor = audio_tensor.unsqueeze(0)
current_length = audio_tensor.shape[-1]
if current_length < target_length:
padding_needed = target_length - current_length
padding_tuple = (0, padding_needed)
padded_audio_tensor = F.pad(
audio_tensor, padding_tuple, mode="constant", value=0
)
else:
padded_audio_tensor = audio_tensor[..., :target_length] # crop if too long
return padded_audio_tensor
def split_audio(
audio_tensor: torch.Tensor, chunk_size: int = 128
) -> list[torch.Tensor]:
"""
Split into chunks of (1, chunk_size).
"""
if not isinstance(chunk_size, int) or chunk_size <= 0:
raise ValueError("chunk_size must be a positive integer.")
if audio_tensor.dim() == 1:
audio_tensor = audio_tensor.unsqueeze(0)
num_samples = audio_tensor.shape[-1]
if num_samples == 0:
return []
chunks = list(torch.split(audio_tensor, chunk_size, dim=-1))
return chunks
def reconstruct_audio(chunks: list[torch.Tensor]) -> torch.Tensor:
"""
Reconstruct audio from chunks. Returns (1, N).
"""
if not chunks:
return torch.empty(1, 0)
chunks = [c if c.dim() == 2 else c.unsqueeze(0) for c in chunks]
try:
reconstructed_tensor = torch.cat(chunks, dim=-1)
except RuntimeError as e:
raise RuntimeError(
f"Failed to concatenate audio chunks. Ensure chunks have compatible shapes "
f"for concatenation along dim -1. Original error: {e}"
)
return reconstructed_tensor
def normalize(audio_tensor: torch.Tensor, eps: float = 1e-8) -> torch.Tensor:
max_val = torch.max(torch.abs(audio_tensor))
if max_val < eps:
return audio_tensor # silence, skip normalization
return audio_tensor / max_val

View File

@@ -18,6 +18,7 @@ SISU (Super Ingenious Sound Upscaler) is a project that uses GANs (Generative Ad
1. **Set Up**:
- Make sure you have Python installed (version 3.8 or higher).
- Install needed packages: `pip install -r requirements.txt`
- Install current version of PyTorch (CUDA/ROCm/What ever your device supports)
2. **Prepare Audio Data**:
- Put your audio files in the `dataset/good` folder.

0
__init__.py Normal file
View File

97
app.py Normal file
View File

@@ -0,0 +1,97 @@
import argparse
import torch
import torchaudio
import torchcodec
import tqdm
import AudioUtils
from generator import SISUGenerator
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--model", type=str, help="Model to use for upscaling")
parser.add_argument(
"--clip_length",
type=int,
default=16384,
help="Internal clip length, leave unspecified if unsure",
)
parser.add_argument(
"--sample_rate", type=int, default=44100, help="Output clip sample rate"
)
parser.add_argument(
"--bitrate",
type=int,
default=192000,
help="Output clip bitrate",
)
parser.add_argument("-i", "--input", type=str, help="Input audio file")
parser.add_argument("-o", "--output", type=str, help="Output audio file")
args = parser.parse_args()
if args.sample_rate < 8000:
print(
"Sample rate cannot be lower than 8000! (44100 is recommended for base models)"
)
exit()
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
generator = SISUGenerator().to(device)
generator = torch.compile(generator)
models_dir = args.model
clip_length = args.clip_length
input_audio = args.input
output_audio = args.output
if models_dir:
ckpt = torch.load(models_dir, map_location=device)
generator.load_state_dict(ckpt["G"])
else:
print(
"Generator model (--model) isn't specified. Do you have the trained model? If not, you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)"
)
def start():
# To Mono!
decoder = torchcodec.decoders.AudioDecoder(input_audio)
decoded_samples = decoder.get_all_samples()
audio = decoded_samples.data
original_sample_rate = decoded_samples.sample_rate
audio = AudioUtils.stereo_tensor_to_mono(audio)
audio = AudioUtils.normalize(audio)
resample_transform = torchaudio.transforms.Resample(
original_sample_rate, args.sample_rate
)
audio = resample_transform(audio)
splitted_audio = AudioUtils.split_audio(audio, clip_length)
splitted_audio_on_device = [t.to(device) for t in splitted_audio]
processed_audio = []
for clip in tqdm.tqdm(splitted_audio_on_device, desc="Processing..."):
processed_audio.append(generator(clip))
reconstructed_audio = AudioUtils.reconstruct_audio(processed_audio)
print(f"Saving {output_audio}!")
torchaudio.save_with_torchcodec(
uri=output_audio,
src=reconstructed_audio,
sample_rate=args.sample_rate,
channels_first=True,
compression=args.bitrate,
)
start()

88
data.py
View File

@@ -1,35 +1,79 @@
from torch.utils.data import Dataset
import torch.nn.functional as F
import torch
import torchaudio
import os
import random
import torchaudio.transforms as T
import torchaudio
import torchcodec.decoders as decoders
import tqdm
from torch.utils.data import Dataset
import AudioUtils
class AudioDataset(Dataset):
#audio_sample_rates = [8000, 11025, 16000, 22050]
audio_sample_rates = [11025]
def __init__(self, input_dir):
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
def __init__(self, input_dir, clip_length: int = 8000, normalize: bool = True):
self.clip_length = clip_length
self.normalize = normalize
input_files = [
os.path.join(input_dir, f)
for f in os.listdir(input_dir)
if os.path.isfile(os.path.join(input_dir, f))
and f.lower().endswith((".wav", ".mp3", ".flac"))
]
data = []
for audio_clip in tqdm.tqdm(
input_files, desc=f"Processing {len(input_files)} audio file(s)"
):
decoder = decoders.AudioDecoder(audio_clip)
decoded_samples = decoder.get_all_samples()
audio = decoded_samples.data.float() # ensure float32
original_sample_rate = decoded_samples.sample_rate
audio = AudioUtils.stereo_tensor_to_mono(audio)
if normalize:
audio = AudioUtils.normalize(audio)
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(
original_sample_rate, mangled_sample_rate
)
resample_transform_high = torchaudio.transforms.Resample(
mangled_sample_rate, original_sample_rate
)
low_audio = resample_transform_high(resample_transform_low(audio))
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length)
splitted_low_quality_audio = AudioUtils.split_audio(low_audio, clip_length)
if not splitted_high_quality_audio or not splitted_low_quality_audio:
continue # skip empty or invalid clips
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(
splitted_high_quality_audio[-1], clip_length
)
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(
splitted_low_quality_audio[-1], clip_length
)
for high_quality_data, low_quality_data in zip(
splitted_high_quality_audio, splitted_low_quality_audio
):
data.append(
(
(high_quality_data, low_quality_data),
(original_sample_rate, mangled_sample_rate),
)
)
self.audio_data = data
def __len__(self):
return len(self.input_files)
return len(self.audio_data)
def __getitem__(self, idx):
# Load high-quality audio
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
# Generate low-quality audio with random downsampling
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
low_quality_audio = resample_transform_low(high_quality_audio)
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
low_quality_audio = resample_transform_high(low_quality_audio)
return (AudioUtils.stereo_tensor_to_mono(high_quality_audio), original_sample_rate), (AudioUtils.stereo_tensor_to_mono(low_quality_audio), mangled_sample_rate)
return self.audio_data[idx]

View File

@@ -1,41 +1,75 @@
import torch
import torch.nn as nn
import torch.nn.utils as utils
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
def discriminator_block(
in_channels,
out_channels,
kernel_size=3,
stride=1,
dilation=1,
spectral_norm=True,
use_instance_norm=True,
):
padding = (kernel_size // 2) * dilation
return nn.Sequential(
utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)),
nn.BatchNorm1d(out_channels),
nn.LeakyReLU(0.2, inplace=True) # Changed activation to LeakyReLU
conv_layer = nn.Conv1d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
)
if spectral_norm:
conv_layer = utils.spectral_norm(conv_layer)
layers = [conv_layer]
layers.append(nn.LeakyReLU(0.2, inplace=True))
if use_instance_norm:
layers.append(nn.InstanceNorm1d(out_channels))
return nn.Sequential(*layers)
class AttentionBlock(nn.Module):
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid(),
)
def forward(self, x):
attention_weights = self.attention(x)
return x * attention_weights
class SISUDiscriminator(nn.Module):
def __init__(self):
def __init__(self, layers=32):
super(SISUDiscriminator, self).__init__()
layers = 32 # Increased base layer count
self.model = nn.Sequential(
# Initial Convolution
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample
# Core Discriminator Blocks with varied kernels and dilations
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample
discriminator_block(layers * 2, layers * 2, kernel_size=3, dilation=2),
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
discriminator_block(layers * 4, layers * 4, kernel_size=3, dilation=8),
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=16),
discriminator_block(layers * 8, layers * 8, kernel_size=3, dilation=8),
discriminator_block(layers * 8, layers * 4, kernel_size=5, dilation=4),
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=2),
discriminator_block(layers * 2, layers, kernel_size=5, dilation=1),
# Final Convolution
discriminator_block(layers, 1, kernel_size=3, stride=1),
discriminator_block(1, layers, kernel_size=7, stride=1),
discriminator_block(layers, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2),
AttentionBlock(layers * 4),
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
discriminator_block(layers * 8, layers * 2, kernel_size=5, stride=2),
discriminator_block(
layers * 2,
1,
spectral_norm=False,
use_instance_norm=False,
),
)
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
def forward(self, x):
# Gaussian noise is not necessary here for discriminator as it is already implicit in the training process
x = self.model(x)
x = self.global_avg_pool(x)
x = x.view(-1, 1)
x = x.view(x.size(0), -1)
return x

View File

@@ -1,39 +1,81 @@
import torch
import torch.nn as nn
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
return nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
nn.BatchNorm1d(out_channels),
nn.PReLU()
)
class SISUGenerator(nn.Module):
def __init__(self):
super(SISUGenerator, self).__init__()
layer = 32 # Increased base layer count
self.conv1 = nn.Sequential(
nn.Conv1d(1, layer, kernel_size=7, padding=3),
nn.BatchNorm1d(layer),
nn.Conv1d(
in_channels,
out_channels,
kernel_size=kernel_size,
dilation=dilation,
padding=(kernel_size // 2) * dilation,
),
nn.InstanceNorm1d(out_channels),
nn.PReLU(),
)
self.conv_blocks = nn.Sequential(
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
conv_block(layer, layer*2, kernel_size=5, dilation=2), # Local Context
conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
conv_block(layer*2, layer*4, kernel_size=7, dilation=8), # Longer range dependencies
conv_block(layer*4, layer*4, kernel_size=3, dilation=16), # Longer range dependencies
conv_block(layer*4, layer*2, kernel_size=5, dilation=8), # Wider context
conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
conv_block(layer*2, layer, kernel_size=5, dilation=2), # Local Context
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
)
self.final_layer = nn.Sequential(
nn.Conv1d(layer, 1, kernel_size=3, padding=1),
class AttentionBlock(nn.Module):
"""
Simple Channel Attention Block. Learns to weight channels based on their importance.
"""
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid(),
)
def forward(self, x):
attention_weights = self.attention(x)
return x * attention_weights
class ResidualInResidualBlock(nn.Module):
def __init__(self, channels, num_convs=3):
super(ResidualInResidualBlock, self).__init__()
self.conv_layers = nn.Sequential(
*[conv_block(channels, channels) for _ in range(num_convs)]
)
self.attention = AttentionBlock(channels)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.conv_blocks(x)
x = self.final_layer(x)
x = self.conv_layers(x)
x = self.attention(x)
return x + residual
class SISUGenerator(nn.Module):
def __init__(self, channels=16, num_rirb=4, alpha=1):
super(SISUGenerator, self).__init__()
self.alpha = alpha
self.conv1 = nn.Sequential(
nn.Conv1d(1, channels, kernel_size=7, padding=3),
nn.InstanceNorm1d(channels),
nn.PReLU(),
)
self.rir_blocks = nn.Sequential(
*[ResidualInResidualBlock(channels) for _ in range(num_rirb)]
)
self.final_layer = nn.Sequential(
nn.Conv1d(channels, 1, kernel_size=3, padding=1), nn.Tanh()
)
def forward(self, x):
residual_input = x
x = self.conv1(x)
x_rirb_out = self.rir_blocks(x)
learned_residual = self.final_layer(x_rirb_out)
output = residual_input + self.alpha * learned_residual
return torch.tanh(output)

View File

@@ -1,14 +0,0 @@
filelock==3.16.1
fsspec==2024.10.0
Jinja2==3.1.4
MarkupSafe==2.1.5
mpmath==1.3.0
networkx==3.4.2
numpy==2.2.1
pytorch-triton-rocm==3.2.0+git0d4682f0
setuptools==70.2.0
sympy==1.13.1
torch==2.6.0.dev20241222+rocm6.2.4
torchaudio==2.6.0.dev20241222+rocm6.2.4
tqdm==4.67.1
typing_extensions==4.12.2

View File

@@ -1,189 +1,245 @@
import argparse
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchaudio
import tqdm
from accelerate import Accelerator
from torch.utils.data import DataLoader, DistributedSampler
import argparse
import math
from torch.utils.data import random_split
from torch.utils.data import DataLoader
import AudioUtils
from data import AudioDataset
from generator import SISUGenerator
from discriminator import SISUDiscriminator
from generator import SISUGenerator
from utils.TrainingTools import discriminator_train, generator_train
def perceptual_loss(y_true, y_pred):
return torch.mean((y_true - y_pred) ** 2)
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
optimizer_d.zero_grad()
# Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality[0])
d_loss_real = criterion_d(discriminator_decision_from_real, real_labels)
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output.detach())
d_loss_fake = criterion_d(discriminator_decision_from_fake, fake_labels)
# Combine real and fake losses
d_loss = (d_loss_real + d_loss_fake) / 2.0
# Backward pass and optimization
d_loss.backward()
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer_d.step()
return d_loss
def generator_train(low_quality, real_labels):
optimizer_g.zero_grad()
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
discriminator_decision = discriminator(generator_output)
g_loss = criterion_g(discriminator_decision, real_labels)
g_loss.backward()
optimizer_g.step()
return generator_output
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--generator", type=str, default=None,
help="Path to the generator model file")
parser.add_argument("--discriminator", type=str, default=None,
help="Path to the discriminator model file")
# ---------------------------
# Argument parsing
# ---------------------------
parser = argparse.ArgumentParser(description="Training script (safer defaults)")
parser.add_argument("--resume", action="store_true", help="Resume training")
parser.add_argument(
"--epochs", type=int, default=5000, help="Number of training epochs"
)
parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
parser.add_argument("--num_workers", type=int, default=2, help="DataLoader num_workers")
parser.add_argument("--debug", action="store_true", help="Print debug logs")
parser.add_argument(
"--no_pin_memory", action="store_true", help="Disable pin_memory even on CUDA"
)
args = parser.parse_args()
# Check for CUDA availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# ---------------------------
# Init accelerator
# ---------------------------
# Initialize dataset and dataloader
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir)
accelerator = Accelerator(mixed_precision="bf16")
# ========= MULTIPLE =========
# dataset_size = len(dataset)
# train_size = int(dataset_size * .9)
# val_size = int(dataset_size-train_size)
#train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
# train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
# val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
# ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
# Initialize models and move them to device
# ---------------------------
# Models
# ---------------------------
generator = SISUGenerator()
discriminator = SISUDiscriminator()
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, weights_only=True))
if args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, weights_only=True))
accelerator.print("🔨 | Compiling models...")
generator = generator.to(device)
discriminator = discriminator.to(device)
generator = torch.compile(generator)
discriminator = torch.compile(discriminator)
# Loss
criterion_g = nn.MSELoss()
criterion_d = nn.BCELoss()
accelerator.print("✅ | Compiling done!")
# Optimizers
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
# ---------------------------
# Dataset / DataLoader
# ---------------------------
accelerator.print("📊 | Fetching dataset...")
dataset = AudioDataset("./dataset")
# Scheduler
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
sampler = DistributedSampler(dataset) if accelerator.num_processes > 1 else None
pin_memory = torch.cuda.is_available() and not args.no_pin_memory
def start_training():
train_loader = DataLoader(
dataset,
sampler=sampler,
batch_size=args.batch_size,
shuffle=(sampler is None),
num_workers=args.num_workers,
pin_memory=pin_memory,
persistent_workers=pin_memory,
)
# Training loop
if not train_loader or not train_loader.batch_size or train_loader.batch_size == 0:
accelerator.print("🪹 | There is no data to train with! Exiting...")
exit()
# ========= DISCRIMINATOR PRE-TRAINING =========
# discriminator_epochs = 1
# for discriminator_epoch in range(discriminator_epochs):
loader_batch_size = train_loader.batch_size
# # ========= TRAINING =========
# for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
# high_quality_sample = high_quality_clip[0].to(device)
# low_quality_sample = low_quality_clip[0].to(device)
accelerator.print("✅ | Dataset fetched!")
# scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
# ---------------------------
# Losses / Optimizers / Scalers
# ---------------------------
# # ========= LABELS =========
# batch_size = high_quality_sample.size(0)
# real_labels = torch.ones(batch_size, 1).to(device)
# fake_labels = torch.zeros(batch_size, 1).to(device)
optimizer_g = optim.AdamW(
generator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
)
optimizer_d = optim.AdamW(
discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
)
# # ========= DISCRIMINATOR =========
# discriminator.train()
# discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_g, mode="min", factor=0.5, patience=5
)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_d, mode="min", factor=0.5, patience=5
)
# torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
criterion_g = nn.BCEWithLogitsLoss()
criterion_d = nn.MSELoss()
generator_epochs = 5000
for generator_epoch in range(generator_epochs):
low_quality_audio = (torch.empty((1)), 1)
high_quality_audio = (torch.empty((1)), 1)
ai_enhanced_audio = (torch.empty((1)), 1)
# ---------------------------
# Prepare accelerator
# ---------------------------
times_correct = 0
generator, discriminator, optimizer_g, optimizer_d, train_loader = accelerator.prepare(
generator, discriminator, optimizer_g, optimizer_d, train_loader
)
# ========= TRAINING =========
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
# for high_quality_clip, low_quality_clip in train_data_loader:
high_quality_sample = (high_quality_clip[0].to(device), high_quality_clip[1])
low_quality_sample = (low_quality_clip[0].to(device), low_quality_clip[1])
# ---------------------------
# Checkpoint helpers
# ---------------------------
models_dir = "./models"
os.makedirs(models_dir, exist_ok=True)
# ========= LABELS =========
batch_size = high_quality_clip[0].size(0)
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
# ========= DISCRIMINATOR =========
discriminator.train()
discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
def save_ckpt(path, epoch):
accelerator.wait_for_everyone()
if accelerator.is_main_process:
accelerator.save(
{
"epoch": epoch,
"G": accelerator.unwrap_model(generator).state_dict(),
"D": accelerator.unwrap_model(discriminator).state_dict(),
"optG": optimizer_g.state_dict(),
"optD": optimizer_d.state_dict(),
"schedG": scheduler_g.state_dict(),
"schedD": scheduler_d.state_dict(),
},
path,
)
# ========= GENERATOR =========
start_epoch = 0
if args.resume:
ckpt_path = os.path.join(models_dir, "last.pt")
ckpt = torch.load(ckpt_path)
accelerator.unwrap_model(generator).load_state_dict(ckpt["G"])
accelerator.unwrap_model(discriminator).load_state_dict(ckpt["D"])
optimizer_g.load_state_dict(ckpt["optG"])
optimizer_d.load_state_dict(ckpt["optD"])
scheduler_g.load_state_dict(ckpt["schedG"])
scheduler_d.load_state_dict(ckpt["schedD"])
start_epoch = ckpt.get("epoch", 1)
accelerator.print(f"🔁 | Resumed from epoch {start_epoch}!")
real_buf = torch.full(
(loader_batch_size, 1), 1, device=accelerator.device, dtype=torch.float32
)
fake_buf = torch.zeros(
(loader_batch_size, 1), device=accelerator.device, dtype=torch.float32
)
accelerator.print("🏋️ | Started training...")
try:
for epoch in range(start_epoch, args.epochs):
generator.train()
generator_output = generator_train(low_quality_sample, real_labels)
discriminator.train()
# ========= SAVE LATEST AUDIO =========
high_quality_audio = high_quality_clip
low_quality_audio = low_quality_clip
ai_enhanced_audio = (generator_output, high_quality_clip[1])
running_d, running_g, steps = 0.0, 0.0, 0
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
#print(f"Generator metric {metric}!")
#scheduler_g.step(metric)
for i, (
(high_quality, low_quality),
(high_sample_rate, low_sample_rate),
) in enumerate(tqdm.tqdm(train_loader, desc=f"Epoch {epoch}")):
batch_size = high_quality.size(0)
if generator_epoch % 10 == 0:
print(f"Saved epoch {generator_epoch}!")
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
real_labels = real_buf[:batch_size].to(accelerator.device)
fake_labels = fake_buf[:batch_size].to(accelerator.device)
torch.save(discriminator.state_dict(), f"models/current-epoch-discriminator.pt")
torch.save(generator.state_dict(), f"models/current-epoch-generator.pt")
# --- Discriminator ---
optimizer_d.zero_grad(set_to_none=True)
with accelerator.autocast():
d_loss = discriminator_train(
high_quality,
low_quality,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
)
torch.save(discriminator.state_dict(), "models/epoch-5000-discriminator.pt")
torch.save(generator.state_dict(), "models/epoch-5000-generator.pt")
print("Training complete!")
accelerator.backward(d_loss)
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), 1)
optimizer_d.step()
start_training()
# --- Generator ---
optimizer_g.zero_grad(set_to_none=True)
with accelerator.autocast():
g_total, g_adv = generator_train(
low_quality,
high_quality,
real_labels,
generator,
discriminator,
criterion_d,
)
accelerator.backward(g_total)
torch.nn.utils.clip_grad_norm_(generator.parameters(), 1)
optimizer_g.step()
d_val = accelerator.gather(d_loss.detach()).mean()
g_val = accelerator.gather(g_total.detach()).mean()
if torch.isfinite(d_val):
running_d += d_val.item()
else:
accelerator.print(
f"🫥 | NaN in discriminator loss at step {i}, skipping update."
)
if torch.isfinite(g_val):
running_g += g_val.item()
else:
accelerator.print(
f"🫥 | NaN in generator loss at step {i}, skipping update."
)
steps += 1
# epoch averages & schedulers
if steps == 0:
accelerator.print("🪹 | No steps in epoch (empty dataloader?). Exiting.")
break
mean_d = running_d / steps
mean_g = running_g / steps
scheduler_d.step(mean_d)
scheduler_g.step(mean_g)
save_ckpt(os.path.join(models_dir, "last.pt"), epoch)
accelerator.print(f"🤝 | Epoch {epoch} done | D {mean_d:.4f} | G {mean_g:.4f}")
except Exception:
try:
save_ckpt(os.path.join(models_dir, "crash_last.pt"), epoch)
accelerator.print(f"💾 | Saved crash checkpoint for epoch {epoch}")
except Exception as e:
accelerator.print("😬 | Failed saving crash checkpoint:", e)
raise
accelerator.print("🏁 | Training finished.")

View File

@@ -0,0 +1,87 @@
from typing import Dict, List
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio.transforms as T
class MultiResolutionSTFTLoss(nn.Module):
"""
Multi-resolution STFT loss.
Combines spectral convergence loss and log-magnitude loss
across multiple STFT resolutions.
"""
def __init__(
self,
fft_sizes: List[int] = [1024, 2048, 512],
hop_sizes: List[int] = [120, 240, 50],
win_lengths: List[int] = [600, 1200, 240],
eps: float = 1e-7,
):
super().__init__()
self.eps = eps
self.n_resolutions = len(fft_sizes)
self.stft_transforms = nn.ModuleList()
for n_fft, hop_len, win_len in zip(fft_sizes, hop_sizes, win_lengths):
window = torch.hann_window(win_len)
stft = T.Spectrogram(
n_fft=n_fft,
hop_length=hop_len,
win_length=win_len,
window_fn=lambda _: window,
power=None, # Keep complex output
center=True,
pad_mode="reflect",
normalized=False,
)
self.stft_transforms.append(stft)
def forward(
self, y_true: torch.Tensor, y_pred: torch.Tensor
) -> Dict[str, torch.Tensor]:
"""
Args:
y_true: (B, T) or (B, 1, T) waveform
y_pred: (B, T) or (B, 1, T) waveform
"""
# Ensure correct shape (B, T)
if y_true.dim() == 3 and y_true.size(1) == 1:
y_true = y_true.squeeze(1)
if y_pred.dim() == 3 and y_pred.size(1) == 1:
y_pred = y_pred.squeeze(1)
sc_loss = 0.0
mag_loss = 0.0
for stft in self.stft_transforms:
stft = stft.to(y_pred.device)
# Complex STFTs: (B, F, T, 2)
stft_true = stft(y_true)
stft_pred = stft(y_pred)
# Magnitudes
stft_mag_true = torch.abs(stft_true)
stft_mag_pred = torch.abs(stft_pred)
# --- Spectral Convergence Loss ---
norm_true = torch.linalg.norm(stft_mag_true, dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, dim=(-2, -1))
sc_loss += torch.mean(norm_diff / (norm_true + self.eps))
# --- Log STFT Magnitude Loss ---
mag_loss += F.l1_loss(
torch.log(stft_mag_pred + self.eps),
torch.log(stft_mag_true + self.eps),
)
# Average across resolutions
sc_loss /= self.n_resolutions
mag_loss /= self.n_resolutions
total_loss = sc_loss + mag_loss
return {"total": total_loss, "sc": sc_loss, "mag": mag_loss}

60
utils/TrainingTools.py Normal file
View File

@@ -0,0 +1,60 @@
import torch
# In case if needed again...
# from utils.MultiResolutionSTFTLoss import MultiResolutionSTFTLoss
#
# stft_loss_fn = MultiResolutionSTFTLoss(
# fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240]
# )
def signal_mae(input_one: torch.Tensor, input_two: torch.Tensor) -> torch.Tensor:
absolute_difference = torch.abs(input_one - input_two)
return torch.mean(absolute_difference)
def discriminator_train(
high_quality,
low_quality,
high_labels,
low_labels,
discriminator,
generator,
criterion,
):
decision_high = discriminator(high_quality)
d_loss_high = criterion(decision_high, high_labels)
# print(f"Is this real?: {discriminator_decision_from_real} | {d_loss_real}")
decision_low = discriminator(low_quality)
d_loss_low = criterion(decision_low, low_labels)
# print(f"Is this real?: {discriminator_decision_from_fake} | {d_loss_fake}")
with torch.no_grad():
generator_quality = generator(low_quality)
decision_gen = discriminator(generator_quality)
d_loss_gen = criterion(decision_gen, low_labels)
noise = torch.rand_like(high_quality) * 0.08
decision_noise = discriminator(high_quality + noise)
d_loss_noise = criterion(decision_noise, low_labels)
d_loss = (d_loss_high + d_loss_low + d_loss_gen + d_loss_noise) / 4.0
return d_loss
def generator_train(
low_quality, high_quality, real_labels, generator, discriminator, adv_criterion
):
generator_output = generator(low_quality)
discriminator_decision = discriminator(generator_output)
adversarial_loss = adv_criterion(discriminator_decision, real_labels)
# Signal similarity
similarity_loss = signal_mae(generator_output, high_quality)
combined_loss = adversarial_loss + (similarity_loss * 100)
return combined_loss, adversarial_loss

0
utils/__init__.py Normal file
View File