⚗️ | Experimenting with larger model architecture.

This commit is contained in:
NikkeDoy 2025-01-08 15:33:18 +02:00
parent 89f8c68986
commit f615b39ded
3 changed files with 53 additions and 36 deletions

View File

@ -2,29 +2,39 @@ import torch
import torch.nn as nn
import torch.nn.utils as utils
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
padding = (kernel_size // 2) * dilation
return nn.Sequential(
utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)),
nn.BatchNorm1d(out_channels),
nn.LeakyReLU(0.2, inplace=True) # Changed activation to LeakyReLU
)
class SISUDiscriminator(nn.Module):
def __init__(self):
super(SISUDiscriminator, self).__init__()
layers = 8
layers = 32 # Increased base layer count
self.model = nn.Sequential(
utils.spectral_norm(nn.Conv1d(1, layers, kernel_size=7, stride=2, padding=3)),
nn.BatchNorm1d(layers),
nn.PReLU(),
nn.Conv1d(layers, layers * 2, kernel_size=7, padding=3),
nn.BatchNorm1d(layers * 2),
nn.PReLU(),
nn.Conv1d(layers * 2, layers * 4, kernel_size=5, padding=2),
nn.BatchNorm1d(layers * 4),
nn.PReLU(),
nn.Conv1d(layers * 4, layers * 8, kernel_size=3, padding=1),
nn.BatchNorm1d(layers * 8),
nn.PReLU(),
nn.Conv1d(layers * 8, 1, kernel_size=3, padding=1),
# Initial Convolution
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample
# Core Discriminator Blocks with varied kernels and dilations
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample
discriminator_block(layers * 2, layers * 2, kernel_size=3, dilation=2),
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
discriminator_block(layers * 4, layers * 4, kernel_size=3, dilation=8),
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=16),
discriminator_block(layers * 8, layers * 8, kernel_size=3, dilation=8),
discriminator_block(layers * 8, layers * 4, kernel_size=5, dilation=4),
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=2),
discriminator_block(layers * 2, layers, kernel_size=5, dilation=1),
# Final Convolution
discriminator_block(layers, 1, kernel_size=3, stride=1),
)
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
def forward(self, x):
x = x + 0.01 * torch.randn_like(x)
# Gaussian noise is not necessary here for discriminator as it is already implicit in the training process
x = self.model(x)
x = self.global_avg_pool(x)
x = x.view(-1, 1)

View File

@ -1,31 +1,39 @@
import torch.nn as nn
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
return nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
nn.BatchNorm1d(out_channels),
nn.PReLU()
)
class SISUGenerator(nn.Module):
def __init__(self):
super(SISUGenerator, self).__init__()
layer = 16
# Convolution layers with BatchNorm and Residuals
layer = 32 # Increased base layer count
self.conv1 = nn.Sequential(
nn.Conv1d(1, layer * 2, kernel_size=7, padding=3),
nn.BatchNorm1d(layer * 2),
nn.PReLU(),
nn.Conv1d(layer * 2, layer * 5, kernel_size=7, padding=3),
nn.BatchNorm1d(layer * 5),
nn.PReLU(),
nn.Conv1d(layer * 5, layer * 5, kernel_size=7, padding=3),
nn.BatchNorm1d(layer * 5),
nn.Conv1d(1, layer, kernel_size=7, padding=3),
nn.BatchNorm1d(layer),
nn.PReLU(),
)
self.conv_blocks = nn.Sequential(
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
conv_block(layer, layer*2, kernel_size=5, dilation=2), # Local Context
conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
conv_block(layer*2, layer*4, kernel_size=7, dilation=8), # Longer range dependencies
conv_block(layer*4, layer*4, kernel_size=3, dilation=16), # Longer range dependencies
conv_block(layer*4, layer*2, kernel_size=5, dilation=8), # Wider context
conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
conv_block(layer*2, layer, kernel_size=5, dilation=2), # Local Context
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
)
self.final_layer = nn.Sequential(
nn.Conv1d(layer * 5, layer * 2, kernel_size=5, padding=2),
nn.BatchNorm1d(layer * 2),
nn.PReLU(),
nn.Conv1d(layer * 2, 1, kernel_size=3, padding=1),
# nn.Tanh() # Normalize audio... if needed...
nn.Conv1d(layer, 1, kernel_size=3, padding=1),
)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.conv_blocks(x)
x = self.final_layer(x)
return x + residual

View File

@ -175,16 +175,15 @@ def start_training():
if generator_epoch % 10 == 0:
print(f"Saved epoch {generator_epoch}!")
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from what ever that low_quality had to high_quality
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
if generator_epoch % 50 == 0:
torch.save(discriminator.state_dict(), f"models/epoch-{generator_epoch}-discriminator.pt")
torch.save(generator.state_dict(), f"models/epoch-{generator_epoch}-generator.pt")
torch.save(discriminator.state_dict(), f"models/current-epoch-discriminator.pt")
torch.save(generator.state_dict(), f"models/current-epoch-generator.pt")
torch.save(discriminator.state_dict(), "models/epoch-500-discriminator.pt")
torch.save(generator.state_dict(), "models/epoch-500-generator.pt")
torch.save(discriminator.state_dict(), "models/epoch-5000-discriminator.pt")
torch.save(generator.state_dict(), "models/epoch-5000-generator.pt")
print("Training complete!")
start_training()