8 Commits

Author SHA1 Message Date
1717e7a008 ⚗️ | Experimenting... 2025-02-10 19:35:50 +02:00
fb7b624c87 ⚗️ | Experimenting with very small model. 2025-02-10 12:44:42 +02:00
0790a0d3da ⚗️ | Experimenting with smaller architecture. 2025-01-25 16:48:10 +02:00
f615b39ded ⚗️ | Experimenting with larger model architecture. 2025-01-08 15:33:18 +02:00
89f8c68986 ⚗️ | Experimenting, again. 2024-12-26 04:00:24 +02:00
2ff45de22d 🔥 | Removed unnecessary test file. 2024-12-25 00:10:45 +02:00
eca71ff5ea ⚗️ | Experimenting still... 2024-12-25 00:09:57 +02:00
1000692f32 ⚗️ | Experimenting with other generator architectures. 2024-12-21 23:54:11 +02:00
7 changed files with 192 additions and 170 deletions

18
AudioUtils.py Normal file
View File

@ -0,0 +1,18 @@
import torch
import torch.nn.functional as F
def stereo_tensor_to_mono(waveform):
if waveform.shape[0] > 1:
# Average across channels
mono_waveform = torch.mean(waveform, dim=0, keepdim=True)
else:
# Already mono
mono_waveform = waveform
return mono_waveform
def stretch_tensor(tensor, target_length):
scale_factor = target_length / tensor.size(1)
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
return tensor

57
data.py
View File

@ -1,49 +1,52 @@
from torch.utils.data import Dataset
import torch.nn.functional as F
import torch
import torchaudio
import os
import random
from AudioUtils import stereo_tensor_to_mono, stretch_tensor
class AudioDataset(Dataset):
audio_sample_rates = [8000, 11025, 16000, 22050]
audio_sample_rates = [11025]
def __init__(self, input_dir, target_duration=None, padding_mode='constant', padding_value=0.0):
self.input_files = [os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')]
self.target_duration = target_duration # Duration in seconds or None if not set
self.padding_mode = padding_mode
self.padding_value = padding_value
def __init__(self, input_dir):
self.input_files = [
os.path.join(root, f)
for root, _, files in os.walk(input_dir)
for f in files if f.endswith('.wav')
]
def __len__(self):
return len(self.input_files)
def __getitem__(self, idx):
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
# Load high-quality audio
high_quality_path = self.input_files[idx]
high_quality_audio, original_sample_rate = torchaudio.load(high_quality_path)
high_quality_audio = stereo_tensor_to_mono(high_quality_audio)
# Generate low-quality audio with random downsampling
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
low_quality_audio = resample_transform(high_quality_audio)
resample_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
low_quality_audio = resample_low(high_quality_audio)
# Calculate target length based on desired duration and 16000 Hz
# if self.target_duration is not None:
# target_length = int(self.target_duration * 44100)
# else:
# # Calculate duration of original high quality audio
# target_length = high_quality_wav.size(1)
# Pad both to the calculated target length
# high_quality_wav = self.stretch_tensor(high_quality_wav, target_length)
# low_quality_wav = self.stretch_tensor(low_quality_wav, target_length)
resample_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
low_quality_audio = resample_high(low_quality_audio)
# Pad or truncate to match a fixed length
target_length = 44100 # Adjust this based on your data
high_quality_audio = self.pad_or_truncate(high_quality_audio, target_length)
low_quality_audio = self.pad_or_truncate(low_quality_audio, target_length)
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)
def stretch_tensor(self, tensor, target_length):
def pad_or_truncate(self, tensor, target_length):
current_length = tensor.size(1)
scale_factor = target_length / current_length
# Resample the tensor using linear interpolation
tensor = F.interpolate(tensor.unsqueeze(0), scale_factor=scale_factor, mode='linear', align_corners=False).squeeze(0)
if current_length < target_length:
# Pad with zeros
padding = target_length - current_length
tensor = F.pad(tensor, (0, padding))
else:
# Truncate to target length
tensor = tensor[:, :target_length]
return tensor

View File

@ -1,24 +1,38 @@
import torch
import torch.nn as nn
import torch.nn.utils as utils
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
padding = (kernel_size // 2) * dilation
return nn.Sequential(
utils.spectral_norm(
nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding
)
),
nn.BatchNorm1d(out_channels),
nn.LeakyReLU(0.2, inplace=True)
)
class SISUDiscriminator(nn.Module):
def __init__(self):
super(SISUDiscriminator, self).__init__()
layers = 4
self.model = nn.Sequential(
nn.Conv1d(2, 128, kernel_size=3, padding=1),
#nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(128, 256, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(256, 128, kernel_size=3, padding=1),
#nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(128, 64, kernel_size=3, padding=1),
#nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(64, 1, kernel_size=3, padding=1),
#nn.LeakyReLU(0.2, inplace=True),
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1),
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1),
discriminator_block(layers * 2, layers * 4, kernel_size=3, dilation=4),
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=8),
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=16),
discriminator_block(layers * 2, layers, kernel_size=5, dilation=2),
discriminator_block(layers, 1, kernel_size=3, stride=1)
)
self.global_avg_pool = nn.AdaptiveAvgPool1d(1) # Output size (1,)
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
def forward(self, x):
x = self.model(x)
x = self.global_avg_pool(x)
x = x.view(-1, 1) # Flatten to (batch_size, 1)
return x
return x.view(-1, 1)

View File

@ -1,27 +1,41 @@
import torch.nn as nn
def conv_residual_block(in_channels, out_channels, kernel_size=3, dilation=1):
padding = (kernel_size // 2) * dilation
return nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation, padding=padding),
nn.BatchNorm1d(out_channels),
nn.PReLU(),
nn.Conv1d(out_channels, out_channels, kernel_size, dilation=dilation, padding=padding),
nn.BatchNorm1d(out_channels)
)
class SISUGenerator(nn.Module):
def __init__(self, upscale_scale=1): # No noise_dim parameter
def __init__(self):
super(SISUGenerator, self).__init__()
self.layers1 = nn.Sequential(
nn.Conv1d(2, 128, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(128, 256, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True),
layers = 4
self.conv1 = nn.Sequential(
nn.Conv1d(1, layers, kernel_size=7, padding=3),
nn.BatchNorm1d(layers),
nn.PReLU()
)
self.layers2 = nn.Sequential(
nn.Conv1d(256, 128, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(128, 64, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(64, 2, kernel_size=3, padding=1),
# nn.Tanh()
self.conv_blocks = nn.Sequential(
conv_residual_block(layers, layers, kernel_size=3, dilation=1),
conv_residual_block(layers, layers * 2, kernel_size=5, dilation=2),
conv_residual_block(layers * 2, layers * 4, kernel_size=3, dilation=16),
conv_residual_block(layers * 4, layers * 2, kernel_size=5, dilation=8),
conv_residual_block(layers * 2, layers, kernel_size=5, dilation=2),
conv_residual_block(layers, layers, kernel_size=3, dilation=1)
)
def forward(self, x, scale):
x = self.layers1(x)
upsample = nn.Upsample(scale_factor=scale, mode='nearest')
x = upsample(x)
x = self.layers2(x)
return x
self.final_layer = nn.Sequential(
nn.Conv1d(layers, 1, kernel_size=3, padding=1)
)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.conv_blocks(x) + x # Adding residual connection after blocks
x = self.final_layer(x)
return x + residual

View File

@ -1,12 +1,14 @@
filelock>=3.16.1
fsspec>=2024.10.0
Jinja2>=3.1.4
MarkupSafe>=2.1.5
mpmath>=1.3.0
networkx>=3.4.2
numpy>=2.1.2
pillow>=11.0.0
setuptools>=70.2.0
sympy>=1.13.1
tqdm>=4.67.1
typing_extensions>=4.12.2
filelock==3.16.1
fsspec==2024.10.0
Jinja2==3.1.4
MarkupSafe==2.1.5
mpmath==1.3.0
networkx==3.4.2
numpy==2.2.1
pytorch-triton-rocm==3.2.0+git0d4682f0
setuptools==70.2.0
sympy==1.13.1
torch==2.6.0.dev20241222+rocm6.2.4
torchaudio==2.6.0.dev20241222+rocm6.2.4
tqdm==4.67.1
typing_extensions==4.12.2

10
test.py
View File

@ -1,10 +0,0 @@
import torch.nn as nn
import torch
from discriminator import SISUDiscriminator
discriminator = SISUDiscriminator()
test_input = torch.randn(1, 2, 1000) # Example input (batch_size, channels, frames)
output = discriminator(test_input)
print(output)
print("Output shape:", output.shape)

View File

@ -6,95 +6,96 @@ import torch.nn.functional as F
import torchaudio
import tqdm
import argparse
import math
from torch.utils.data import random_split
from torch.utils.data import DataLoader
import AudioUtils
from data import AudioDataset
from generator import SISUGenerator
from discriminator import SISUDiscriminator
# Mel Spectrogram Loss
class MelSpectrogramLoss(nn.Module):
def __init__(self, sample_rate=44100, n_fft=2048, hop_length=512, n_mels=128):
super(MelSpectrogramLoss, self).__init__()
self.mel_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
n_mels=n_mels
).to(device) # Move to device
def perceptual_loss(y_true, y_pred):
return torch.mean((y_true - y_pred) ** 2)
def forward(self, y_pred, y_true):
mel_pred = self.mel_transform(y_pred)
mel_true = self.mel_transform(y_true)
return F.l1_loss(mel_pred, mel_true)
def snr(y_true, y_pred):
noise = y_true - y_pred
signal_power = torch.mean(y_true ** 2)
noise_power = torch.mean(noise ** 2)
snr_db = 10 * torch.log10(signal_power / noise_power)
return snr_db
def discriminator_train(high_quality, low_quality, scale, real_labels, fake_labels):
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
optimizer_d.zero_grad()
discriminator_decision_from_real = discriminator(high_quality)
# TODO: Experiment with criterions HERE!
# Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality[0])
d_loss_real = criterion_d(discriminator_decision_from_real, real_labels)
generator_output = generator(low_quality, scale)
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output.detach())
# TODO: Experiment with criterions HERE!
d_loss_fake = criterion_d(discriminator_decision_from_fake, fake_labels)
# Combine real and fake losses
d_loss = (d_loss_real + d_loss_fake) / 2.0
# Backward pass and optimization
d_loss.backward()
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) #Gradient Clipping
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer_d.step()
return d_loss
def generator_train(low_quality, scale, real_labels):
def generator_train(low_quality, real_labels):
optimizer_g.zero_grad()
generator_output = generator(low_quality, scale)
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
discriminator_decision = discriminator(generator_output)
# TODO: Fix this shit
g_loss = criterion_g(discriminator_decision, real_labels)
g_loss.backward()
optimizer_g.step()
return generator_output
def first(objects):
if len(objects) >= 1:
return objects[0]
return objects
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--generator", type=str, default=None,
help="Path to the generator model file")
parser.add_argument("--discriminator", type=str, default=None,
help="Path to the discriminator model file")
args = parser.parse_args()
# Check for CUDA availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Initialize dataset and dataloader
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, target_duration=2.0)
dataset = AudioDataset(dataset_dir)
dataset_size = len(dataset)
train_size = int(dataset_size * .9)
val_size = int(dataset_size-train_size)
# ========= SINGLE =========
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
# Initialize models and move them to device
generator = SISUGenerator()
discriminator = SISUDiscriminator()
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, weights_only=True))
if args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, weights_only=True))
generator = generator.to(device)
discriminator = discriminator.to(device)
# Loss
criterion_g = nn.L1Loss()
criterion_g_mel = MelSpectrogramLoss().to(device)
criterion_d = nn.BCEWithLogitsLoss()
criterion_g = nn.MSELoss()
criterion_d = nn.BCELoss()
# Optimizers
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
@ -105,43 +106,19 @@ scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min'
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
def start_training():
# Training loop
# ========= DISCRIMINATOR PRE-TRAINING =========
discriminator_epochs = 1
for discriminator_epoch in range(discriminator_epochs):
# ========= TRAINING =========
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
high_quality_sample = high_quality_clip[0].to(device)
low_quality_sample = low_quality_clip[0].to(device)
scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
# ========= LABELS =========
batch_size = high_quality_sample.size(0)
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
# ========= DISCRIMINATOR =========
discriminator.train()
discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
generator_epochs = 500
generator_epochs = 5000
for generator_epoch in range(generator_epochs):
low_quality_audio = (torch.empty((1)), 1)
high_quality_audio = (torch.empty((1)), 1)
ai_enhanced_audio = (torch.empty((1)), 1)
times_correct = 0
# ========= TRAINING =========
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
high_quality_sample = high_quality_clip[0].to(device)
low_quality_sample = low_quality_clip[0].to(device)
scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
# for high_quality_clip, low_quality_clip in train_data_loader:
high_quality_sample = (high_quality_clip[0].to(device), high_quality_clip[1])
low_quality_sample = (low_quality_clip[0].to(device), low_quality_clip[1])
# ========= LABELS =========
batch_size = high_quality_clip[0].size(0)
@ -150,34 +127,38 @@ def start_training():
# ========= DISCRIMINATOR =========
discriminator.train()
for _ in range(3):
discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
# ========= GENERATOR =========
generator.train()
generator_output = generator_train(low_quality_sample, scale, real_labels)
generator_output = generator_train(low_quality_sample, real_labels)
# ========= SAVE LATEST AUDIO =========
high_quality_audio = high_quality_clip
low_quality_audio = low_quality_clip
ai_enhanced_audio = (generator_output, high_quality_clip[1])
high_quality_audio = (first(high_quality_clip[0]), high_quality_clip[1][0])
low_quality_audio = (first(low_quality_clip[0]), low_quality_clip[1][0])
ai_enhanced_audio = (first(generator_output[0]), high_quality_clip[1][0])
print(high_quality_audio)
metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
print(f"Generator metric {metric}!")
scheduler_g.step(metric)
if generator_epoch % 10 == 0:
print(f"Saved epoch {generator_epoch}!")
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), low_quality_audio[1])
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
if generator_epoch % 50 == 0:
torch.save(discriminator.state_dict(), f"models/epoch-{generator_epoch}-discriminator.pt")
torch.save(generator.state_dict(), f"models/epoch-{generator_epoch}-generator.pt")
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
#print(f"Generator metric {metric}!")
#scheduler_g.step(metric)
torch.save(discriminator.state_dict(), "models/epoch-500-discriminator.pt")
torch.save(generator.state_dict(), "models/epoch-500-generator.pt")
if generator_epoch % 10 == 0:
print(f"Saved epoch {generator_epoch}!")
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
torch.save(discriminator.state_dict(), f"models/current-epoch-discriminator.pt")
torch.save(generator.state_dict(), f"models/current-epoch-generator.pt")
torch.save(discriminator.state_dict(), "models/epoch-5000-discriminator.pt")
torch.save(generator.state_dict(), "models/epoch-5000-generator.pt")
print("Training complete!")
start_training()