SISU/discriminator.py
2025-02-10 19:35:50 +02:00

39 lines
1.4 KiB
Python

import torch
import torch.nn as nn
import torch.nn.utils as utils
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
padding = (kernel_size // 2) * dilation
return nn.Sequential(
utils.spectral_norm(
nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding
)
),
nn.BatchNorm1d(out_channels),
nn.LeakyReLU(0.2, inplace=True)
)
class SISUDiscriminator(nn.Module):
def __init__(self):
super(SISUDiscriminator, self).__init__()
layers = 4
self.model = nn.Sequential(
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1),
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1),
discriminator_block(layers * 2, layers * 4, kernel_size=3, dilation=4),
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=8),
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=16),
discriminator_block(layers * 2, layers, kernel_size=5, dilation=2),
discriminator_block(layers, 1, kernel_size=3, stride=1)
)
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
def forward(self, x):
x = self.model(x)
x = self.global_avg_pool(x)
return x.view(-1, 1)