Compare commits
10 Commits
b7d7e95c89
...
architectu
Author | SHA1 | Date | |
---|---|---|---|
1717e7a008 | |||
fb7b624c87 | |||
0790a0d3da | |||
f615b39ded | |||
89f8c68986 | |||
2ff45de22d | |||
eca71ff5ea | |||
1000692f32 | |||
de72ee31ea | |||
70e20f53d4 |
1
.gitignore
vendored
1
.gitignore
vendored
@ -166,3 +166,4 @@ dataset/
|
|||||||
old-output/
|
old-output/
|
||||||
output/
|
output/
|
||||||
*.wav
|
*.wav
|
||||||
|
models/
|
||||||
|
18
AudioUtils.py
Normal file
18
AudioUtils.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
def stereo_tensor_to_mono(waveform):
|
||||||
|
if waveform.shape[0] > 1:
|
||||||
|
# Average across channels
|
||||||
|
mono_waveform = torch.mean(waveform, dim=0, keepdim=True)
|
||||||
|
else:
|
||||||
|
# Already mono
|
||||||
|
mono_waveform = waveform
|
||||||
|
return mono_waveform
|
||||||
|
|
||||||
|
def stretch_tensor(tensor, target_length):
|
||||||
|
scale_factor = target_length / tensor.size(1)
|
||||||
|
|
||||||
|
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
|
||||||
|
|
||||||
|
return tensor
|
62
data.py
62
data.py
@ -1,50 +1,52 @@
|
|||||||
from torch.utils.data import Dataset
|
from torch.utils.data import Dataset
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
|
from AudioUtils import stereo_tensor_to_mono, stretch_tensor
|
||||||
|
|
||||||
class AudioDataset(Dataset):
|
class AudioDataset(Dataset):
|
||||||
audio_sample_rates = [8000, 11025, 16000, 22050]
|
audio_sample_rates = [11025]
|
||||||
|
|
||||||
def __init__(self, input_dir, target_duration=None, padding_mode='constant', padding_value=0.0):
|
def __init__(self, input_dir):
|
||||||
self.input_files = [os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')]
|
self.input_files = [
|
||||||
self.target_duration = target_duration # Duration in seconds or None if not set
|
os.path.join(root, f)
|
||||||
self.padding_mode = padding_mode
|
for root, _, files in os.walk(input_dir)
|
||||||
self.padding_value = padding_value
|
for f in files if f.endswith('.wav')
|
||||||
|
]
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.input_files)
|
return len(self.input_files)
|
||||||
|
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
high_quality_wav, sr_original = torchaudio.load(self.input_files[idx], normalize=True)
|
# Load high-quality audio
|
||||||
|
high_quality_path = self.input_files[idx]
|
||||||
|
high_quality_audio, original_sample_rate = torchaudio.load(high_quality_path)
|
||||||
|
high_quality_audio = stereo_tensor_to_mono(high_quality_audio)
|
||||||
|
|
||||||
sample_rate = random.choice(self.audio_sample_rates)
|
# Generate low-quality audio with random downsampling
|
||||||
resample_transform = torchaudio.transforms.Resample(sr_original, sample_rate)
|
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
||||||
low_quality_wav = resample_transform(high_quality_wav)
|
resample_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
|
||||||
low_quality_wav = low_quality_wav
|
low_quality_audio = resample_low(high_quality_audio)
|
||||||
|
|
||||||
# Calculate target length based on desired duration and 16000 Hz
|
resample_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
||||||
if self.target_duration is not None:
|
low_quality_audio = resample_high(low_quality_audio)
|
||||||
target_length = int(self.target_duration * 44100)
|
|
||||||
else:
|
|
||||||
# Calculate duration of original high quality audio
|
|
||||||
target_length = high_quality_wav.size(1)
|
|
||||||
|
|
||||||
# Pad both to the calculated target length
|
# Pad or truncate to match a fixed length
|
||||||
high_quality_wav = self.stretch_tensor(high_quality_wav, target_length)
|
target_length = 44100 # Adjust this based on your data
|
||||||
low_quality_wav = self.stretch_tensor(low_quality_wav, target_length)
|
high_quality_audio = self.pad_or_truncate(high_quality_audio, target_length)
|
||||||
|
low_quality_audio = self.pad_or_truncate(low_quality_audio, target_length)
|
||||||
|
|
||||||
|
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)
|
||||||
|
|
||||||
return low_quality_wav, high_quality_wav
|
def pad_or_truncate(self, tensor, target_length):
|
||||||
|
|
||||||
def stretch_tensor(self, tensor, target_length):
|
|
||||||
current_length = tensor.size(1)
|
current_length = tensor.size(1)
|
||||||
scale_factor = target_length / current_length
|
if current_length < target_length:
|
||||||
|
# Pad with zeros
|
||||||
# Resample the tensor using linear interpolation
|
padding = target_length - current_length
|
||||||
tensor = F.interpolate(tensor.unsqueeze(0), scale_factor=scale_factor, mode='linear', align_corners=False).squeeze(0)
|
tensor = F.pad(tensor, (0, padding))
|
||||||
|
else:
|
||||||
|
# Truncate to target length
|
||||||
|
tensor = tensor[:, :target_length]
|
||||||
return tensor
|
return tensor
|
||||||
|
@ -1,24 +1,38 @@
|
|||||||
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
import torch.nn.utils as utils
|
||||||
|
|
||||||
|
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
|
||||||
|
padding = (kernel_size // 2) * dilation
|
||||||
|
return nn.Sequential(
|
||||||
|
utils.spectral_norm(
|
||||||
|
nn.Conv1d(in_channels, out_channels,
|
||||||
|
kernel_size=kernel_size,
|
||||||
|
stride=stride,
|
||||||
|
dilation=dilation,
|
||||||
|
padding=padding
|
||||||
|
)
|
||||||
|
),
|
||||||
|
nn.BatchNorm1d(out_channels),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True)
|
||||||
|
)
|
||||||
|
|
||||||
class SISUDiscriminator(nn.Module):
|
class SISUDiscriminator(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(SISUDiscriminator, self).__init__()
|
super(SISUDiscriminator, self).__init__()
|
||||||
|
layers = 4
|
||||||
self.model = nn.Sequential(
|
self.model = nn.Sequential(
|
||||||
nn.Conv1d(2, 128, kernel_size=3, padding=1),
|
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1),
|
||||||
nn.LeakyReLU(0.2, inplace=True),
|
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1),
|
||||||
nn.Conv1d(128, 256, kernel_size=3, padding=1),
|
discriminator_block(layers * 2, layers * 4, kernel_size=3, dilation=4),
|
||||||
nn.LeakyReLU(0.2, inplace=True),
|
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=8),
|
||||||
nn.Conv1d(256, 128, kernel_size=3, padding=1),
|
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=16),
|
||||||
nn.LeakyReLU(0.2, inplace=True),
|
discriminator_block(layers * 2, layers, kernel_size=5, dilation=2),
|
||||||
nn.Conv1d(128, 64, kernel_size=3, padding=1),
|
discriminator_block(layers, 1, kernel_size=3, stride=1)
|
||||||
nn.LeakyReLU(0.2, inplace=True),
|
|
||||||
nn.Conv1d(64, 1, kernel_size=3, padding=1),
|
|
||||||
nn.LeakyReLU(0.2, inplace=True),
|
|
||||||
)
|
)
|
||||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1) # Output size (1,)
|
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x = self.model(x)
|
x = self.model(x)
|
||||||
x = self.global_avg_pool(x)
|
x = self.global_avg_pool(x)
|
||||||
x = x.view(-1, 1) # Flatten to (batch_size, 1)
|
return x.view(-1, 1)
|
||||||
return x
|
|
||||||
|
46
generator.py
46
generator.py
@ -1,23 +1,41 @@
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
|
def conv_residual_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
||||||
|
padding = (kernel_size // 2) * dilation
|
||||||
|
return nn.Sequential(
|
||||||
|
nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation, padding=padding),
|
||||||
|
nn.BatchNorm1d(out_channels),
|
||||||
|
nn.PReLU(),
|
||||||
|
nn.Conv1d(out_channels, out_channels, kernel_size, dilation=dilation, padding=padding),
|
||||||
|
nn.BatchNorm1d(out_channels)
|
||||||
|
)
|
||||||
|
|
||||||
class SISUGenerator(nn.Module):
|
class SISUGenerator(nn.Module):
|
||||||
def __init__(self, upscale_scale=1): # No noise_dim parameter
|
def __init__(self):
|
||||||
super(SISUGenerator, self).__init__()
|
super(SISUGenerator, self).__init__()
|
||||||
self.model = nn.Sequential(
|
layers = 4
|
||||||
nn.Conv1d(2, 128, kernel_size=3, padding=1),
|
self.conv1 = nn.Sequential(
|
||||||
nn.LeakyReLU(0.2, inplace=True),
|
nn.Conv1d(1, layers, kernel_size=7, padding=3),
|
||||||
nn.Conv1d(128, 256, kernel_size=3, padding=1),
|
nn.BatchNorm1d(layers),
|
||||||
nn.LeakyReLU(0.2, inplace=True),
|
nn.PReLU()
|
||||||
|
)
|
||||||
|
|
||||||
nn.Upsample(scale_factor=upscale_scale, mode='nearest'),
|
self.conv_blocks = nn.Sequential(
|
||||||
|
conv_residual_block(layers, layers, kernel_size=3, dilation=1),
|
||||||
|
conv_residual_block(layers, layers * 2, kernel_size=5, dilation=2),
|
||||||
|
conv_residual_block(layers * 2, layers * 4, kernel_size=3, dilation=16),
|
||||||
|
conv_residual_block(layers * 4, layers * 2, kernel_size=5, dilation=8),
|
||||||
|
conv_residual_block(layers * 2, layers, kernel_size=5, dilation=2),
|
||||||
|
conv_residual_block(layers, layers, kernel_size=3, dilation=1)
|
||||||
|
)
|
||||||
|
|
||||||
nn.Conv1d(256, 128, kernel_size=3, padding=1),
|
self.final_layer = nn.Sequential(
|
||||||
nn.LeakyReLU(0.2, inplace=True),
|
nn.Conv1d(layers, 1, kernel_size=3, padding=1)
|
||||||
nn.Conv1d(128, 64, kernel_size=3, padding=1),
|
|
||||||
nn.LeakyReLU(0.2, inplace=True),
|
|
||||||
nn.Conv1d(64, 2, kernel_size=3, padding=1),
|
|
||||||
nn.Tanh()
|
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.model(x)
|
residual = x
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = self.conv_blocks(x) + x # Adding residual connection after blocks
|
||||||
|
x = self.final_layer(x)
|
||||||
|
return x + residual
|
||||||
|
@ -1,12 +1,14 @@
|
|||||||
filelock>=3.16.1
|
filelock==3.16.1
|
||||||
fsspec>=2024.10.0
|
fsspec==2024.10.0
|
||||||
Jinja2>=3.1.4
|
Jinja2==3.1.4
|
||||||
MarkupSafe>=2.1.5
|
MarkupSafe==2.1.5
|
||||||
mpmath>=1.3.0
|
mpmath==1.3.0
|
||||||
networkx>=3.4.2
|
networkx==3.4.2
|
||||||
numpy>=2.1.2
|
numpy==2.2.1
|
||||||
pillow>=11.0.0
|
pytorch-triton-rocm==3.2.0+git0d4682f0
|
||||||
setuptools>=70.2.0
|
setuptools==70.2.0
|
||||||
sympy>=1.13.1
|
sympy==1.13.1
|
||||||
tqdm>=4.67.1
|
torch==2.6.0.dev20241222+rocm6.2.4
|
||||||
typing_extensions>=4.12.2
|
torchaudio==2.6.0.dev20241222+rocm6.2.4
|
||||||
|
tqdm==4.67.1
|
||||||
|
typing_extensions==4.12.2
|
||||||
|
10
test.py
10
test.py
@ -1,10 +0,0 @@
|
|||||||
import torch.nn as nn
|
|
||||||
import torch
|
|
||||||
from discriminator import SISUDiscriminator
|
|
||||||
|
|
||||||
|
|
||||||
discriminator = SISUDiscriminator()
|
|
||||||
test_input = torch.randn(1, 2, 1000) # Example input (batch_size, channels, frames)
|
|
||||||
output = discriminator(test_input)
|
|
||||||
print(output)
|
|
||||||
print("Output shape:", output.shape)
|
|
175
training.py
175
training.py
@ -6,40 +6,96 @@ import torch.nn.functional as F
|
|||||||
import torchaudio
|
import torchaudio
|
||||||
import tqdm
|
import tqdm
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import math
|
||||||
|
|
||||||
from torch.utils.data import random_split
|
from torch.utils.data import random_split
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
import AudioUtils
|
||||||
from data import AudioDataset
|
from data import AudioDataset
|
||||||
from generator import SISUGenerator
|
from generator import SISUGenerator
|
||||||
from discriminator import SISUDiscriminator
|
from discriminator import SISUDiscriminator
|
||||||
|
|
||||||
|
def perceptual_loss(y_true, y_pred):
|
||||||
|
return torch.mean((y_true - y_pred) ** 2)
|
||||||
|
|
||||||
|
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
|
||||||
|
optimizer_d.zero_grad()
|
||||||
|
|
||||||
|
# Forward pass for real samples
|
||||||
|
discriminator_decision_from_real = discriminator(high_quality[0])
|
||||||
|
d_loss_real = criterion_d(discriminator_decision_from_real, real_labels)
|
||||||
|
|
||||||
|
# Forward pass for fake samples (from generator output)
|
||||||
|
generator_output = generator(low_quality[0])
|
||||||
|
discriminator_decision_from_fake = discriminator(generator_output.detach())
|
||||||
|
d_loss_fake = criterion_d(discriminator_decision_from_fake, fake_labels)
|
||||||
|
|
||||||
|
# Combine real and fake losses
|
||||||
|
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
||||||
|
|
||||||
|
# Backward pass and optimization
|
||||||
|
d_loss.backward()
|
||||||
|
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
|
||||||
|
optimizer_d.step()
|
||||||
|
|
||||||
|
return d_loss
|
||||||
|
|
||||||
|
def generator_train(low_quality, real_labels):
|
||||||
|
optimizer_g.zero_grad()
|
||||||
|
|
||||||
|
# Forward pass for fake samples (from generator output)
|
||||||
|
generator_output = generator(low_quality[0])
|
||||||
|
discriminator_decision = discriminator(generator_output)
|
||||||
|
g_loss = criterion_g(discriminator_decision, real_labels)
|
||||||
|
|
||||||
|
g_loss.backward()
|
||||||
|
optimizer_g.step()
|
||||||
|
return generator_output
|
||||||
|
|
||||||
|
def first(objects):
|
||||||
|
if len(objects) >= 1:
|
||||||
|
return objects[0]
|
||||||
|
return objects
|
||||||
|
|
||||||
|
# Init script argument parser
|
||||||
|
parser = argparse.ArgumentParser(description="Training script")
|
||||||
|
parser.add_argument("--generator", type=str, default=None,
|
||||||
|
help="Path to the generator model file")
|
||||||
|
parser.add_argument("--discriminator", type=str, default=None,
|
||||||
|
help="Path to the discriminator model file")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Check for CUDA availability
|
# Check for CUDA availability
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
print(f"Using device: {device}")
|
print(f"Using device: {device}")
|
||||||
|
|
||||||
# Initialize dataset and dataloader
|
# Initialize dataset and dataloader
|
||||||
dataset_dir = './dataset/good'
|
dataset_dir = './dataset/good'
|
||||||
dataset = AudioDataset(dataset_dir, target_duration=2.0)
|
dataset = AudioDataset(dataset_dir)
|
||||||
|
|
||||||
dataset_size = len(dataset)
|
# ========= SINGLE =========
|
||||||
train_size = int(dataset_size * .9)
|
|
||||||
val_size = int(dataset_size-train_size)
|
|
||||||
|
|
||||||
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
|
||||||
|
|
||||||
train_data_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
|
|
||||||
val_data_loader = DataLoader(val_dataset, batch_size=8, shuffle=True)
|
|
||||||
|
|
||||||
# Initialize models and move them to device
|
# Initialize models and move them to device
|
||||||
generator = SISUGenerator()
|
generator = SISUGenerator()
|
||||||
discriminator = SISUDiscriminator()
|
discriminator = SISUDiscriminator()
|
||||||
|
|
||||||
|
if args.generator is not None:
|
||||||
|
generator.load_state_dict(torch.load(args.generator, weights_only=True))
|
||||||
|
if args.discriminator is not None:
|
||||||
|
discriminator.load_state_dict(torch.load(args.discriminator, weights_only=True))
|
||||||
|
|
||||||
generator = generator.to(device)
|
generator = generator.to(device)
|
||||||
discriminator = discriminator.to(device)
|
discriminator = discriminator.to(device)
|
||||||
|
|
||||||
# Loss
|
# Loss
|
||||||
criterion_g = nn.L1Loss()
|
criterion_g = nn.MSELoss()
|
||||||
criterion_d = nn.BCEWithLogitsLoss()
|
criterion_d = nn.BCELoss()
|
||||||
|
|
||||||
# Optimizers
|
# Optimizers
|
||||||
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||||
@ -49,87 +105,60 @@ optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.99
|
|||||||
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
|
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
|
||||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
||||||
|
|
||||||
def snr(y_true, y_pred):
|
|
||||||
noise = y_true - y_pred
|
|
||||||
signal_power = torch.mean(y_true ** 2)
|
|
||||||
noise_power = torch.mean(noise ** 2)
|
|
||||||
snr_db = 10 * torch.log10(signal_power / noise_power)
|
|
||||||
return snr_db
|
|
||||||
|
|
||||||
def discriminator_train(discriminator, optimizer, criterion, generator, real_labels, fake_labels, high_quality, low_quality):
|
|
||||||
optimizer.zero_grad()
|
|
||||||
|
|
||||||
discriminator_decision_from_real = discriminator(high_quality)
|
|
||||||
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
|
||||||
|
|
||||||
generator_output = generator(low_quality)
|
|
||||||
discriminator_decision_from_fake = discriminator(generator_output.detach())
|
|
||||||
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels)
|
|
||||||
|
|
||||||
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
|
||||||
|
|
||||||
d_loss.backward()
|
|
||||||
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) #Gradient Clipping
|
|
||||||
optimizer.step()
|
|
||||||
# print(f"Discriminator Loss: {d_loss.item():.4f}, Mean Real Logit: {discriminator_decision_from_real.mean().item():.2f}, Mean Fake Logit: {discriminator_decision_from_fake.mean().item():.2f}")
|
|
||||||
|
|
||||||
def start_training():
|
def start_training():
|
||||||
|
generator_epochs = 5000
|
||||||
# Training loop
|
|
||||||
# discriminator_epochs = 1000
|
|
||||||
generator_epochs = 500
|
|
||||||
for generator_epoch in range(generator_epochs):
|
for generator_epoch in range(generator_epochs):
|
||||||
low_quality_audio = torch.empty((1))
|
low_quality_audio = (torch.empty((1)), 1)
|
||||||
high_quality_audio = torch.empty((1))
|
high_quality_audio = (torch.empty((1)), 1)
|
||||||
ai_enhanced_audio = torch.empty((1))
|
ai_enhanced_audio = (torch.empty((1)), 1)
|
||||||
|
|
||||||
# Training
|
times_correct = 0
|
||||||
for low_quality, high_quality in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
|
|
||||||
high_quality = high_quality.to(device)
|
|
||||||
low_quality = low_quality.to(device)
|
|
||||||
|
|
||||||
batch_size = high_quality.size(0)
|
# ========= TRAINING =========
|
||||||
|
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
|
||||||
|
# for high_quality_clip, low_quality_clip in train_data_loader:
|
||||||
|
high_quality_sample = (high_quality_clip[0].to(device), high_quality_clip[1])
|
||||||
|
low_quality_sample = (low_quality_clip[0].to(device), low_quality_clip[1])
|
||||||
|
|
||||||
|
# ========= LABELS =========
|
||||||
|
batch_size = high_quality_clip[0].size(0)
|
||||||
real_labels = torch.ones(batch_size, 1).to(device)
|
real_labels = torch.ones(batch_size, 1).to(device)
|
||||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||||
|
|
||||||
# Train Discriminator
|
# ========= DISCRIMINATOR =========
|
||||||
discriminator.train()
|
discriminator.train()
|
||||||
|
discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
|
||||||
|
|
||||||
for _ in range(3):
|
# ========= GENERATOR =========
|
||||||
discriminator_train(discriminator, optimizer_d, criterion_d, generator, real_labels, fake_labels, high_quality, low_quality)
|
|
||||||
|
|
||||||
# Train Generator
|
|
||||||
generator.train()
|
generator.train()
|
||||||
optimizer_g.zero_grad()
|
generator_output = generator_train(low_quality_sample, real_labels)
|
||||||
|
|
||||||
# Generator loss: how well fake data fools the discriminator
|
# ========= SAVE LATEST AUDIO =========
|
||||||
generator_output = generator(low_quality)
|
high_quality_audio = (first(high_quality_clip[0]), high_quality_clip[1][0])
|
||||||
discriminator_decision = discriminator(generator_output) # No detach here
|
low_quality_audio = (first(low_quality_clip[0]), low_quality_clip[1][0])
|
||||||
g_loss = criterion_g(discriminator_decision, real_labels) # Train generator to produce real-like outputs
|
ai_enhanced_audio = (first(generator_output[0]), high_quality_clip[1][0])
|
||||||
|
print(high_quality_audio)
|
||||||
|
|
||||||
g_loss.backward()
|
print(f"Saved epoch {generator_epoch}!")
|
||||||
optimizer_g.step()
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
||||||
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
|
||||||
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
|
||||||
|
|
||||||
low_quality_audio = low_quality
|
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
|
||||||
high_quality_audio = high_quality
|
#print(f"Generator metric {metric}!")
|
||||||
ai_enhanced_audio = generator_output
|
#scheduler_g.step(metric)
|
||||||
|
|
||||||
metric = snr(high_quality_audio, ai_enhanced_audio)
|
|
||||||
print(f"Generator metric {metric}!")
|
|
||||||
scheduler_g.step(metric)
|
|
||||||
|
|
||||||
if generator_epoch % 10 == 0:
|
if generator_epoch % 10 == 0:
|
||||||
print(f"Saved epoch {generator_epoch}!")
|
print(f"Saved epoch {generator_epoch}!")
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0].cpu(), 44100)
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu(), 44100)
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0].cpu(), 44100)
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
|
||||||
|
|
||||||
if generator_epoch % 50 == 0:
|
torch.save(discriminator.state_dict(), f"models/current-epoch-discriminator.pt")
|
||||||
torch.save(discriminator.state_dict(), "discriminator.pt")
|
torch.save(generator.state_dict(), f"models/current-epoch-generator.pt")
|
||||||
torch.save(generator.state_dict(), "generator.pt")
|
|
||||||
|
|
||||||
torch.save(discriminator.state_dict(), "discriminator.pt")
|
torch.save(discriminator.state_dict(), "models/epoch-5000-discriminator.pt")
|
||||||
torch.save(generator.state_dict(), "generator.pt")
|
torch.save(generator.state_dict(), "models/epoch-5000-generator.pt")
|
||||||
print("Training complete!")
|
print("Training complete!")
|
||||||
|
|
||||||
start_training()
|
start_training()
|
||||||
|
Reference in New Issue
Block a user