⚗️ | Experiment with other layer layouts.
This commit is contained in:
parent
b7d7e95c89
commit
70e20f53d4
25
data.py
25
data.py
@ -19,26 +19,25 @@ class AudioDataset(Dataset):
|
||||
|
||||
|
||||
def __getitem__(self, idx):
|
||||
high_quality_wav, sr_original = torchaudio.load(self.input_files[idx], normalize=True)
|
||||
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
|
||||
|
||||
sample_rate = random.choice(self.audio_sample_rates)
|
||||
resample_transform = torchaudio.transforms.Resample(sr_original, sample_rate)
|
||||
low_quality_wav = resample_transform(high_quality_wav)
|
||||
low_quality_wav = low_quality_wav
|
||||
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
||||
resample_transform = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
|
||||
low_quality_audio = resample_transform(high_quality_audio)
|
||||
|
||||
# Calculate target length based on desired duration and 16000 Hz
|
||||
if self.target_duration is not None:
|
||||
target_length = int(self.target_duration * 44100)
|
||||
else:
|
||||
# Calculate duration of original high quality audio
|
||||
target_length = high_quality_wav.size(1)
|
||||
# if self.target_duration is not None:
|
||||
# target_length = int(self.target_duration * 44100)
|
||||
# else:
|
||||
# # Calculate duration of original high quality audio
|
||||
# target_length = high_quality_wav.size(1)
|
||||
|
||||
# Pad both to the calculated target length
|
||||
high_quality_wav = self.stretch_tensor(high_quality_wav, target_length)
|
||||
low_quality_wav = self.stretch_tensor(low_quality_wav, target_length)
|
||||
# high_quality_wav = self.stretch_tensor(high_quality_wav, target_length)
|
||||
# low_quality_wav = self.stretch_tensor(low_quality_wav, target_length)
|
||||
|
||||
|
||||
return low_quality_wav, high_quality_wav
|
||||
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)
|
||||
|
||||
def stretch_tensor(self, tensor, target_length):
|
||||
current_length = tensor.size(1)
|
||||
|
BIN
discriminator.pt
Normal file
BIN
discriminator.pt
Normal file
Binary file not shown.
@ -5,15 +5,15 @@ class SISUDiscriminator(nn.Module):
|
||||
super(SISUDiscriminator, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
nn.Conv1d(2, 128, kernel_size=3, padding=1),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
#nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(128, 256, kernel_size=3, padding=1),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(256, 128, kernel_size=3, padding=1),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
#nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(128, 64, kernel_size=3, padding=1),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
#nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(64, 1, kernel_size=3, padding=1),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
#nn.LeakyReLU(0.2, inplace=True),
|
||||
)
|
||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1) # Output size (1,)
|
||||
|
||||
|
BIN
generator.pt
Normal file
BIN
generator.pt
Normal file
Binary file not shown.
32
generator.py
32
generator.py
@ -3,21 +3,25 @@ import torch.nn as nn
|
||||
class SISUGenerator(nn.Module):
|
||||
def __init__(self, upscale_scale=1): # No noise_dim parameter
|
||||
super(SISUGenerator, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
self.layers1 = nn.Sequential(
|
||||
nn.Conv1d(2, 128, kernel_size=3, padding=1),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
# nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(128, 256, kernel_size=3, padding=1),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
|
||||
nn.Upsample(scale_factor=upscale_scale, mode='nearest'),
|
||||
|
||||
nn.Conv1d(256, 128, kernel_size=3, padding=1),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(128, 64, kernel_size=3, padding=1),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(64, 2, kernel_size=3, padding=1),
|
||||
nn.Tanh()
|
||||
# nn.LeakyReLU(0.2, inplace=True),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
self.layers2 = nn.Sequential(
|
||||
nn.Conv1d(256, 128, kernel_size=3, padding=1),
|
||||
# nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(128, 64, kernel_size=3, padding=1),
|
||||
# nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(64, 2, kernel_size=3, padding=1),
|
||||
# nn.Tanh()
|
||||
)
|
||||
|
||||
def forward(self, x, scale):
|
||||
x = self.layers1(x)
|
||||
upsample = nn.Upsample(scale_factor=scale, mode='nearest')
|
||||
x = upsample(x)
|
||||
x = self.layers2(x)
|
||||
return x
|
||||
|
168
training.py
168
training.py
@ -13,6 +13,60 @@ from data import AudioDataset
|
||||
from generator import SISUGenerator
|
||||
from discriminator import SISUDiscriminator
|
||||
|
||||
# Mel Spectrogram Loss
|
||||
class MelSpectrogramLoss(nn.Module):
|
||||
def __init__(self, sample_rate=44100, n_fft=2048, hop_length=512, n_mels=128):
|
||||
super(MelSpectrogramLoss, self).__init__()
|
||||
self.mel_transform = torchaudio.transforms.MelSpectrogram(
|
||||
sample_rate=sample_rate,
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
n_mels=n_mels
|
||||
).to(device) # Move to device
|
||||
|
||||
def forward(self, y_pred, y_true):
|
||||
mel_pred = self.mel_transform(y_pred)
|
||||
mel_true = self.mel_transform(y_true)
|
||||
return F.l1_loss(mel_pred, mel_true)
|
||||
|
||||
def snr(y_true, y_pred):
|
||||
noise = y_true - y_pred
|
||||
signal_power = torch.mean(y_true ** 2)
|
||||
noise_power = torch.mean(noise ** 2)
|
||||
snr_db = 10 * torch.log10(signal_power / noise_power)
|
||||
return snr_db
|
||||
|
||||
def discriminator_train(high_quality, low_quality, scale, real_labels, fake_labels):
|
||||
optimizer_d.zero_grad()
|
||||
|
||||
discriminator_decision_from_real = discriminator(high_quality)
|
||||
# TODO: Experiment with criterions HERE!
|
||||
d_loss_real = criterion_d(discriminator_decision_from_real, real_labels)
|
||||
|
||||
generator_output = generator(low_quality, scale)
|
||||
discriminator_decision_from_fake = discriminator(generator_output.detach())
|
||||
# TODO: Experiment with criterions HERE!
|
||||
d_loss_fake = criterion_d(discriminator_decision_from_fake, fake_labels)
|
||||
|
||||
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
||||
|
||||
d_loss.backward()
|
||||
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) #Gradient Clipping
|
||||
optimizer_d.step()
|
||||
return d_loss
|
||||
|
||||
def generator_train(low_quality, scale, real_labels):
|
||||
optimizer_g.zero_grad()
|
||||
|
||||
generator_output = generator(low_quality, scale)
|
||||
discriminator_decision = discriminator(generator_output)
|
||||
# TODO: Fix this shit
|
||||
g_loss = criterion_g(discriminator_decision, real_labels)
|
||||
|
||||
g_loss.backward()
|
||||
optimizer_g.step()
|
||||
return generator_output
|
||||
|
||||
# Check for CUDA availability
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
print(f"Using device: {device}")
|
||||
@ -27,8 +81,8 @@ val_size = int(dataset_size-train_size)
|
||||
|
||||
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
||||
|
||||
train_data_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
|
||||
val_data_loader = DataLoader(val_dataset, batch_size=8, shuffle=True)
|
||||
train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
|
||||
val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
|
||||
|
||||
# Initialize models and move them to device
|
||||
generator = SISUGenerator()
|
||||
@ -39,6 +93,7 @@ discriminator = discriminator.to(device)
|
||||
|
||||
# Loss
|
||||
criterion_g = nn.L1Loss()
|
||||
criterion_g_mel = MelSpectrogramLoss().to(device)
|
||||
criterion_d = nn.BCEWithLogitsLoss()
|
||||
|
||||
# Optimizers
|
||||
@ -49,87 +104,80 @@ optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.99
|
||||
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
|
||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
||||
|
||||
def snr(y_true, y_pred):
|
||||
noise = y_true - y_pred
|
||||
signal_power = torch.mean(y_true ** 2)
|
||||
noise_power = torch.mean(noise ** 2)
|
||||
snr_db = 10 * torch.log10(signal_power / noise_power)
|
||||
return snr_db
|
||||
|
||||
def discriminator_train(discriminator, optimizer, criterion, generator, real_labels, fake_labels, high_quality, low_quality):
|
||||
optimizer.zero_grad()
|
||||
|
||||
discriminator_decision_from_real = discriminator(high_quality)
|
||||
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
||||
|
||||
generator_output = generator(low_quality)
|
||||
discriminator_decision_from_fake = discriminator(generator_output.detach())
|
||||
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels)
|
||||
|
||||
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
||||
|
||||
d_loss.backward()
|
||||
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) #Gradient Clipping
|
||||
optimizer.step()
|
||||
# print(f"Discriminator Loss: {d_loss.item():.4f}, Mean Real Logit: {discriminator_decision_from_real.mean().item():.2f}, Mean Fake Logit: {discriminator_decision_from_fake.mean().item():.2f}")
|
||||
|
||||
def start_training():
|
||||
|
||||
# Training loop
|
||||
# discriminator_epochs = 1000
|
||||
generator_epochs = 500
|
||||
for generator_epoch in range(generator_epochs):
|
||||
low_quality_audio = torch.empty((1))
|
||||
high_quality_audio = torch.empty((1))
|
||||
ai_enhanced_audio = torch.empty((1))
|
||||
|
||||
# Training
|
||||
for low_quality, high_quality in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
|
||||
high_quality = high_quality.to(device)
|
||||
low_quality = low_quality.to(device)
|
||||
# ========= DISCRIMINATOR PRE-TRAINING =========
|
||||
discriminator_epochs = 1
|
||||
for discriminator_epoch in range(discriminator_epochs):
|
||||
|
||||
batch_size = high_quality.size(0)
|
||||
# ========= TRAINING =========
|
||||
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
|
||||
high_quality_sample = high_quality_clip[0].to(device)
|
||||
low_quality_sample = low_quality_clip[0].to(device)
|
||||
|
||||
scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
|
||||
|
||||
# ========= LABELS =========
|
||||
batch_size = high_quality_sample.size(0)
|
||||
real_labels = torch.ones(batch_size, 1).to(device)
|
||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||
|
||||
# Train Discriminator
|
||||
# ========= DISCRIMINATOR =========
|
||||
discriminator.train()
|
||||
discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
|
||||
|
||||
torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
|
||||
|
||||
generator_epochs = 500
|
||||
for generator_epoch in range(generator_epochs):
|
||||
low_quality_audio = (torch.empty((1)), 1)
|
||||
high_quality_audio = (torch.empty((1)), 1)
|
||||
ai_enhanced_audio = (torch.empty((1)), 1)
|
||||
|
||||
# ========= TRAINING =========
|
||||
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
|
||||
high_quality_sample = high_quality_clip[0].to(device)
|
||||
low_quality_sample = low_quality_clip[0].to(device)
|
||||
|
||||
scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
|
||||
|
||||
# ========= LABELS =========
|
||||
batch_size = high_quality_clip[0].size(0)
|
||||
real_labels = torch.ones(batch_size, 1).to(device)
|
||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||
|
||||
# ========= DISCRIMINATOR =========
|
||||
discriminator.train()
|
||||
for _ in range(3):
|
||||
discriminator_train(discriminator, optimizer_d, criterion_d, generator, real_labels, fake_labels, high_quality, low_quality)
|
||||
discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
|
||||
|
||||
# Train Generator
|
||||
# ========= GENERATOR =========
|
||||
generator.train()
|
||||
optimizer_g.zero_grad()
|
||||
generator_output = generator_train(low_quality_sample, scale, real_labels)
|
||||
|
||||
# Generator loss: how well fake data fools the discriminator
|
||||
generator_output = generator(low_quality)
|
||||
discriminator_decision = discriminator(generator_output) # No detach here
|
||||
g_loss = criterion_g(discriminator_decision, real_labels) # Train generator to produce real-like outputs
|
||||
# ========= SAVE LATEST AUDIO =========
|
||||
high_quality_audio = high_quality_clip
|
||||
low_quality_audio = low_quality_clip
|
||||
ai_enhanced_audio = (generator_output, high_quality_clip[1])
|
||||
|
||||
g_loss.backward()
|
||||
optimizer_g.step()
|
||||
|
||||
low_quality_audio = low_quality
|
||||
high_quality_audio = high_quality
|
||||
ai_enhanced_audio = generator_output
|
||||
|
||||
metric = snr(high_quality_audio, ai_enhanced_audio)
|
||||
metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
|
||||
print(f"Generator metric {metric}!")
|
||||
scheduler_g.step(metric)
|
||||
|
||||
if generator_epoch % 10 == 0:
|
||||
print(f"Saved epoch {generator_epoch}!")
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0].cpu(), 44100)
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu(), 44100)
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0].cpu(), 44100)
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), low_quality_audio[1])
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
|
||||
|
||||
if generator_epoch % 50 == 0:
|
||||
torch.save(discriminator.state_dict(), "discriminator.pt")
|
||||
torch.save(generator.state_dict(), "generator.pt")
|
||||
torch.save(discriminator.state_dict(), f"models/epoch-{generator_epoch}-discriminator.pt")
|
||||
torch.save(generator.state_dict(), f"models/epoch-{generator_epoch}-generator.pt")
|
||||
|
||||
torch.save(discriminator.state_dict(), "discriminator.pt")
|
||||
torch.save(generator.state_dict(), "generator.pt")
|
||||
torch.save(discriminator.state_dict(), "models/epoch-500-discriminator.pt")
|
||||
torch.save(generator.state_dict(), "models/epoch-500-generator.pt")
|
||||
print("Training complete!")
|
||||
|
||||
start_training()
|
||||
|
Loading…
Reference in New Issue
Block a user