1 Commits

Author SHA1 Message Date
1717e7a008 ⚗️ | Experimenting... 2025-02-10 19:35:50 +02:00
5 changed files with 133 additions and 193 deletions

59
data.py
View File

@ -4,50 +4,49 @@ import torch
import torchaudio
import os
import random
import torchaudio.transforms as T
import AudioUtils
from AudioUtils import stereo_tensor_to_mono, stretch_tensor
class AudioDataset(Dataset):
audio_sample_rates = [11025]
MAX_LENGTH = 44100 # Define your desired maximum length here
def __init__(self, input_dir, device):
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
self.device = device
def __init__(self, input_dir):
self.input_files = [
os.path.join(root, f)
for root, _, files in os.walk(input_dir)
for f in files if f.endswith('.wav')
]
def __len__(self):
return len(self.input_files)
def __getitem__(self, idx):
# Load high-quality audio
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
high_quality_path = self.input_files[idx]
high_quality_audio, original_sample_rate = torchaudio.load(high_quality_path)
high_quality_audio = stereo_tensor_to_mono(high_quality_audio)
# Generate low-quality audio with random downsampling
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
low_quality_audio = resample_transform_low(high_quality_audio)
resample_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
low_quality_audio = resample_low(high_quality_audio)
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
low_quality_audio = resample_transform_high(low_quality_audio)
resample_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
low_quality_audio = resample_high(low_quality_audio)
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio)
# Pad or truncate high-quality audio
if high_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - high_quality_audio.shape[1]
high_quality_audio = F.pad(high_quality_audio, (0, padding))
elif high_quality_audio.shape[1] > self.MAX_LENGTH:
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH]
# Pad or truncate low-quality audio
if low_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - low_quality_audio.shape[1]
low_quality_audio = F.pad(low_quality_audio, (0, padding))
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
high_quality_audio = high_quality_audio.to(self.device)
low_quality_audio = low_quality_audio.to(self.device)
# Pad or truncate to match a fixed length
target_length = 44100 # Adjust this based on your data
high_quality_audio = self.pad_or_truncate(high_quality_audio, target_length)
low_quality_audio = self.pad_or_truncate(low_quality_audio, target_length)
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)
def pad_or_truncate(self, tensor, target_length):
current_length = tensor.size(1)
if current_length < target_length:
# Pad with zeros
padding = target_length - current_length
tensor = F.pad(tensor, (0, padding))
else:
# Truncate to target length
tensor = tensor[:, :target_length]
return tensor

View File

@ -2,57 +2,37 @@ import torch
import torch.nn as nn
import torch.nn.utils as utils
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True):
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
padding = (kernel_size // 2) * dilation
conv_layer = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)
if spectral_norm:
conv_layer = utils.spectral_norm(conv_layer)
return nn.Sequential(
conv_layer,
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm1d(out_channels)
utils.spectral_norm(
nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding
)
),
nn.BatchNorm1d(out_channels),
nn.LeakyReLU(0.2, inplace=True)
)
class AttentionBlock(nn.Module):
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
attention_weights = self.attention(x)
return x * attention_weights
class SISUDiscriminator(nn.Module):
def __init__(self, layers=4): #Increased base layer count
def __init__(self):
super(SISUDiscriminator, self).__init__()
layers = 4
self.model = nn.Sequential(
discriminator_block(1, layers, kernel_size=3, stride=1), #Aggressive downsampling
discriminator_block(layers, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
#AttentionBlock(layers * 4), #Added attention
#discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
#AttentionBlock(layers * 8), #Added attention
#discriminator_block(layers * 8, layers * 16, kernel_size=5, dilation=8),
#discriminator_block(layers * 16, layers * 16, kernel_size=3, dilation=1),
#discriminator_block(layers * 16, layers * 8, kernel_size=3, dilation=2),
#discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=1),
discriminator_block(layers * 4, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 2, layers, kernel_size=3, stride=1),
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False) #last layer no spectral norm.
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1),
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1),
discriminator_block(layers * 2, layers * 4, kernel_size=3, dilation=4),
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=8),
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=16),
discriminator_block(layers * 2, layers, kernel_size=5, dilation=2),
discriminator_block(layers, 1, kernel_size=3, stride=1)
)
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.model(x)
x = self.global_avg_pool(x)
x = x.view(-1, 1)
x = self.sigmoid(x)
return x
return x.view(-1, 1)

View File

@ -1,52 +1,41 @@
import torch.nn as nn
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
def conv_residual_block(in_channels, out_channels, kernel_size=3, dilation=1):
padding = (kernel_size // 2) * dilation
return nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation, padding=padding),
nn.BatchNorm1d(out_channels),
nn.PReLU()
nn.PReLU(),
nn.Conv1d(out_channels, out_channels, kernel_size, dilation=dilation, padding=padding),
nn.BatchNorm1d(out_channels)
)
class AttentionBlock(nn.Module):
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
attention_weights = self.attention(x)
return x * attention_weights
class ResidualInResidualBlock(nn.Module):
def __init__(self, channels, num_convs=3):
super(ResidualInResidualBlock, self).__init__()
self.conv_layers = nn.Sequential(*[conv_block(channels, channels) for _ in range(num_convs)])
self.attention = AttentionBlock(channels)
def forward(self, x):
residual = x
x = self.conv_layers(x)
x = self.attention(x)
return x + residual
class SISUGenerator(nn.Module):
def __init__(self, layer=4, num_rirb=4): #increased base layer and rirb amounts
def __init__(self):
super(SISUGenerator, self).__init__()
layers = 4
self.conv1 = nn.Sequential(
nn.Conv1d(1, layer, kernel_size=7, padding=3),
nn.BatchNorm1d(layer),
nn.PReLU(),
nn.Conv1d(1, layers, kernel_size=7, padding=3),
nn.BatchNorm1d(layers),
nn.PReLU()
)
self.conv_blocks = nn.Sequential(
conv_residual_block(layers, layers, kernel_size=3, dilation=1),
conv_residual_block(layers, layers * 2, kernel_size=5, dilation=2),
conv_residual_block(layers * 2, layers * 4, kernel_size=3, dilation=16),
conv_residual_block(layers * 4, layers * 2, kernel_size=5, dilation=8),
conv_residual_block(layers * 2, layers, kernel_size=5, dilation=2),
conv_residual_block(layers, layers, kernel_size=3, dilation=1)
)
self.final_layer = nn.Sequential(
nn.Conv1d(layers, 1, kernel_size=3, padding=1)
)
self.rir_blocks = nn.Sequential(*[ResidualInResidualBlock(layer) for _ in range(num_rirb)])
self.final_layer = nn.Conv1d(layer, 1, kernel_size=3, padding=1)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.rir_blocks(x)
x = self.conv_blocks(x) + x # Adding residual connection after blocks
x = self.final_layer(x)
return x + residual

View File

@ -4,11 +4,11 @@ Jinja2==3.1.4
MarkupSafe==2.1.5
mpmath==1.3.0
networkx==3.4.2
numpy==2.2.3
pytorch-triton-rocm==3.2.0+git4b3bb1f8
numpy==2.2.1
pytorch-triton-rocm==3.2.0+git0d4682f0
setuptools==70.2.0
sympy==1.13.3
torch==2.7.0.dev20250226+rocm6.3
torchaudio==2.6.0.dev20250226+rocm6.3
sympy==1.13.1
torch==2.6.0.dev20241222+rocm6.2.4
torchaudio==2.6.0.dev20241222+rocm6.2.4
tqdm==4.67.1
typing_extensions==4.12.2

View File

@ -10,8 +10,6 @@ import argparse
import math
import os
from torch.utils.data import random_split
from torch.utils.data import DataLoader
@ -20,37 +18,8 @@ from data import AudioDataset
from generator import SISUGenerator
from discriminator import SISUDiscriminator
import torchaudio.transforms as T
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--generator", type=str, default=None,
help="Path to the generator model file")
parser.add_argument("--discriminator", type=str, default=None,
help="Path to the discriminator model file")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
parser.add_argument("--debug", action="store_true", help="Print debug logs")
args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
mfcc_transform = T.MFCC(
sample_rate=44100,
n_mfcc=20,
melkwargs={'n_fft': 2048, 'hop_length': 256}
).to(device)
def gpu_mfcc_loss(y_true, y_pred):
mfccs_true = mfcc_transform(y_true)
mfccs_pred = mfcc_transform(y_pred)
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len]
loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
def perceptual_loss(y_true, y_pred):
return torch.mean((y_true - y_pred) ** 2)
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
optimizer_d.zero_grad()
@ -74,49 +43,56 @@ def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
return d_loss
def generator_train(low_quality, high_quality, real_labels):
def generator_train(low_quality, real_labels):
optimizer_g.zero_grad()
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
#mfcc_l = gpu_mfcc_loss(high_quality[0], generator_output)
discriminator_decision = discriminator(generator_output)
adversarial_loss = criterion_g(discriminator_decision, real_labels)
g_loss = criterion_g(discriminator_decision, real_labels)
#combined_loss = adversarial_loss + 0.5 * mfcc_l
adversarial_loss.backward()
g_loss.backward()
optimizer_g.step()
return generator_output
#return (generator_output, combined_loss, adversarial_loss, mfcc_l)
return (generator_output, adversarial_loss)
def first(objects):
if len(objects) >= 1:
return objects[0]
return objects
debug = args.debug
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--generator", type=str, default=None,
help="Path to the generator model file")
parser.add_argument("--discriminator", type=str, default=None,
help="Path to the discriminator model file")
args = parser.parse_args()
# Check for CUDA availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Initialize dataset and dataloader
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, device)
dataset = AudioDataset(dataset_dir)
# ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=256, shuffle=True)
train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
# Initialize models and move them to device
generator = SISUGenerator()
discriminator = SISUDiscriminator()
epoch: int = args.epoch
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, weights_only=True))
if args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, weights_only=True))
generator = generator.to(device)
discriminator = discriminator.to(device)
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
if args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
# Loss
criterion_g = nn.MSELoss()
criterion_d = nn.BCELoss()
@ -129,9 +105,6 @@ optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.99
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
models_dir = "models"
os.makedirs(models_dir, exist_ok=True)
def start_training():
generator_epochs = 5000
for generator_epoch in range(generator_epochs):
@ -142,10 +115,10 @@ def start_training():
times_correct = 0
# ========= TRAINING =========
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
# for high_quality_clip, low_quality_clip in train_data_loader:
high_quality_sample = (high_quality_clip[0], high_quality_clip[1])
low_quality_sample = (low_quality_clip[0], low_quality_clip[1])
high_quality_sample = (high_quality_clip[0].to(device), high_quality_clip[1])
low_quality_sample = (low_quality_clip[0].to(device), low_quality_clip[1])
# ========= LABELS =========
batch_size = high_quality_clip[0].size(0)
@ -154,39 +127,38 @@ def start_training():
# ========= DISCRIMINATOR =========
discriminator.train()
d_loss = discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
# ========= GENERATOR =========
generator.train()
#generator_output, combined_loss, adversarial_loss, mfcc_l = generator_train(low_quality_sample, high_quality_sample, real_labels)
generator_output, adversarial_loss = generator_train(low_quality_sample, high_quality_sample, real_labels)
if debug:
print(d_loss, adversarial_loss)
scheduler_d.step(d_loss)
scheduler_g.step(adversarial_loss)
generator_output = generator_train(low_quality_sample, real_labels)
# ========= SAVE LATEST AUDIO =========
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0])
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0])
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0])
high_quality_audio = (first(high_quality_clip[0]), high_quality_clip[1][0])
low_quality_audio = (first(low_quality_clip[0]), low_quality_clip[1][0])
ai_enhanced_audio = (first(generator_output[0]), high_quality_clip[1][0])
print(high_quality_audio)
new_epoch = generator_epoch+epoch
print(f"Saved epoch {generator_epoch}!")
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
#print(f"Generator metric {metric}!")
#scheduler_g.step(metric)
if generator_epoch % 10 == 0:
print(f"Saved epoch {new_epoch}!")
torchaudio.save(f"./output/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu(), high_quality_audio[1])
print(f"Saved epoch {generator_epoch}!")
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
if debug:
print(generator.state_dict().keys())
print(discriminator.state_dict().keys())
torch.save(discriminator.state_dict(), f"{models_dir}/discriminator_epoch_{new_epoch}.pt")
torch.save(generator.state_dict(), f"{models_dir}/generator_epoch_{new_epoch}.pt")
torch.save(discriminator.state_dict(), f"models/current-epoch-discriminator.pt")
torch.save(generator.state_dict(), f"models/current-epoch-generator.pt")
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
torch.save(generator, "models/epoch-5000-generator.pt")
torch.save(discriminator.state_dict(), "models/epoch-5000-discriminator.pt")
torch.save(generator.state_dict(), "models/epoch-5000-generator.pt")
print("Training complete!")
start_training()