SISU/discriminator.py
2024-12-17 22:39:03 +02:00

24 lines
854 B
Python

import torch.nn as nn
class SISUDiscriminator(nn.Module):
def __init__(self):
super(SISUDiscriminator, self).__init__()
self.model = nn.Sequential(
nn.Conv1d(2, 64, kernel_size=4, stride=2, padding=1), # Now accepts 2 input channels
nn.LeakyReLU(0.2),
nn.Conv1d(64, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm1d(128),
nn.LeakyReLU(0.2),
nn.Conv1d(128, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm1d(256),
nn.LeakyReLU(0.2),
nn.Conv1d(256, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2),
nn.Conv1d(512, 1, kernel_size=4, stride=1, padding=0),
nn.Sigmoid()
)
def forward(self, x):
return self.model(x)