import torch.nn as nn class SISUDiscriminator(nn.Module): def __init__(self): super(SISUDiscriminator, self).__init__() self.model = nn.Sequential( nn.Conv1d(2, 64, kernel_size=4, stride=2, padding=1), # Now accepts 2 input channels nn.LeakyReLU(0.2), nn.Conv1d(64, 128, kernel_size=4, stride=2, padding=1), nn.BatchNorm1d(128), nn.LeakyReLU(0.2), nn.Conv1d(128, 256, kernel_size=4, stride=2, padding=1), nn.BatchNorm1d(256), nn.LeakyReLU(0.2), nn.Conv1d(256, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm1d(512), nn.LeakyReLU(0.2), nn.Conv1d(512, 1, kernel_size=4, stride=1, padding=0), nn.Sigmoid() ) def forward(self, x): return self.model(x)