SISU/generator.py

28 lines
963 B
Python

import torch.nn as nn
class SISUGenerator(nn.Module):
def __init__(self, upscale_scale=1): # No noise_dim parameter
super(SISUGenerator, self).__init__()
self.layers1 = nn.Sequential(
nn.Conv1d(2, 128, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(128, 256, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True),
)
self.layers2 = nn.Sequential(
nn.Conv1d(256, 128, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(128, 64, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(64, 2, kernel_size=3, padding=1),
# nn.Tanh()
)
def forward(self, x, scale):
x = self.layers1(x)
upsample = nn.Upsample(scale_factor=scale, mode='nearest')
x = upsample(x)
x = self.layers2(x)
return x