Files
SISU/training.py

108 lines
3.4 KiB
Python

import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
import tqdm
from torch.utils.data import random_split
from torch.utils.data import DataLoader
from data import AudioDataset
from generator import SISUGenerator
from discriminator import SISUDiscriminator
# Check for CUDA availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Initialize dataset and dataloader
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, target_duration=2.0)
dataset_size = len(dataset)
train_size = int(dataset_size * .9)
val_size = int(dataset_size-train_size)
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
# Initialize models and move them to device
generator = SISUGenerator()
discriminator = SISUDiscriminator()
generator = generator.to(device)
discriminator = discriminator.to(device)
# Loss
criterion_g = nn.L1Loss()
criterion_d = nn.BCEWithLogitsLoss()
# Optimizers
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
# Training loop
num_epochs = 500
for epoch in range(num_epochs):
low_quality_audio = torch.empty((1))
high_quality_audio = torch.empty((1))
ai_enhanced_audio = torch.empty((1))
total_d_loss = 0
total_g_loss = 0
# Training
for low_quality, high_quality in tqdm.tqdm(train_data_loader, desc=f"Epoch {epoch+1}/{num_epochs}"):
high_quality = high_quality.to(device)
low_quality = low_quality.to(device)
batch_size = 1
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
###### Train Discriminator ######
discriminator.train()
optimizer_d.zero_grad()
# 1. Real data
real_outputs = discriminator(high_quality)
d_loss_real = criterion_d(real_outputs, real_labels)
# 2. Fake data
fake_audio = generator(low_quality)
fake_outputs = discriminator(fake_audio.detach())
d_loss_fake = criterion_d(fake_outputs, fake_labels)
d_loss = (d_loss_real + d_loss_fake) / 2.0 # Without gradient penalty
d_loss.backward()
optimizer_d.step()
total_d_loss += d_loss.item()
generator.train()
optimizer_g.zero_grad()
# Generator loss: how well fake data fools the discriminator
fake_outputs = discriminator(fake_audio) # No detach here
g_loss = criterion_g(fake_outputs, real_labels) # Train generator to produce real-like outputs
g_loss.backward()
optimizer_g.step()
total_g_loss += g_loss.item()
low_quality_audio = low_quality
high_quality_audio = high_quality
ai_enhanced_audio = fake_audio
if epoch % 10 == 0:
print(f"Saved epoch {epoch}!")
torchaudio.save(f"./output/epoch-{epoch}-audio-crap.wav", low_quality_audio[0].cpu(), 44100)
torchaudio.save(f"./output/epoch-{epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu(), 44100)
torchaudio.save(f"./output/epoch-{epoch}-audio-orig.wav", high_quality_audio[0].cpu(), 44100)
torch.save(generator.state_dict(), "generator.pt")
torch.save(discriminator.state_dict(), "discriminator.pt")
print("Training complete!")