import torch import torch.nn as nn import torch.optim as optim import torchaudio import tqdm from torch.utils.data import random_split from torch.utils.data import DataLoader from data import AudioDataset from generator import SISUGenerator from discriminator import SISUDiscriminator # Check for CUDA availability device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Initialize dataset and dataloader dataset_dir = './dataset/good' dataset = AudioDataset(dataset_dir, target_duration=2.0) dataset_size = len(dataset) train_size = int(dataset_size * .9) val_size = int(dataset_size-train_size) train_dataset, val_dataset = random_split(dataset, [train_size, val_size]) train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True) val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True) # Initialize models and move them to device generator = SISUGenerator() discriminator = SISUDiscriminator() generator = generator.to(device) discriminator = discriminator.to(device) # Loss criterion_g = nn.L1Loss() criterion_d = nn.BCEWithLogitsLoss() # Optimizers optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999)) optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999)) # Training loop num_epochs = 500 for epoch in range(num_epochs): low_quality_audio = torch.empty((1)) high_quality_audio = torch.empty((1)) ai_enhanced_audio = torch.empty((1)) total_d_loss = 0 total_g_loss = 0 # Training for low_quality, high_quality in tqdm.tqdm(train_data_loader, desc=f"Epoch {epoch+1}/{num_epochs}"): high_quality = high_quality.to(device) low_quality = low_quality.to(device) batch_size = 1 real_labels = torch.ones(batch_size, 1).to(device) fake_labels = torch.zeros(batch_size, 1).to(device) ###### Train Discriminator ###### discriminator.train() optimizer_d.zero_grad() # 1. Real data real_outputs = discriminator(high_quality) d_loss_real = criterion_d(real_outputs, real_labels) # 2. Fake data fake_audio = generator(low_quality) fake_outputs = discriminator(fake_audio.detach()) d_loss_fake = criterion_d(fake_outputs, fake_labels) d_loss = (d_loss_real + d_loss_fake) / 2.0 # Without gradient penalty d_loss.backward() optimizer_d.step() total_d_loss += d_loss.item() generator.train() optimizer_g.zero_grad() # Generator loss: how well fake data fools the discriminator fake_outputs = discriminator(fake_audio) # No detach here g_loss = criterion_g(fake_outputs, real_labels) # Train generator to produce real-like outputs g_loss.backward() optimizer_g.step() total_g_loss += g_loss.item() low_quality_audio = low_quality high_quality_audio = high_quality ai_enhanced_audio = fake_audio if epoch % 10 == 0: print(f"Saved epoch {epoch}!") torchaudio.save(f"./output/epoch-{epoch}-audio-crap.wav", low_quality_audio[0].cpu(), 44100) torchaudio.save(f"./output/epoch-{epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu(), 44100) torchaudio.save(f"./output/epoch-{epoch}-audio-orig.wav", high_quality_audio[0].cpu(), 44100) torch.save(generator.state_dict(), "generator.pt") torch.save(discriminator.state_dict(), "discriminator.pt") print("Training complete!")