1 Commits

10 changed files with 316 additions and 710 deletions

View File

@@ -16,56 +16,3 @@ def stretch_tensor(tensor, target_length):
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False) tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
return tensor return tensor
def pad_tensor(audio_tensor: torch.Tensor, target_length: int = 128):
current_length = audio_tensor.shape[-1]
if current_length < target_length:
padding_needed = target_length - current_length
padding_tuple = (0, padding_needed)
padded_audio_tensor = F.pad(audio_tensor, padding_tuple, mode='constant', value=0)
else:
padded_audio_tensor = audio_tensor
return padded_audio_tensor
def split_audio(audio_tensor: torch.Tensor, chunk_size: int = 128) -> list[torch.Tensor]:
if not isinstance(chunk_size, int) or chunk_size <= 0:
raise ValueError("chunk_size must be a positive integer.")
# Handle scalar tensor edge case if necessary
if audio_tensor.dim() == 0:
return [audio_tensor] if audio_tensor.numel() > 0 else []
# Identify the dimension to split (usually the last one, representing time/samples)
split_dim = -1
num_samples = audio_tensor.shape[split_dim]
if num_samples == 0:
return [] # Return empty list if the dimension to split is empty
# Use torch.split to divide the tensor into chunks
# It handles the last chunk being potentially smaller automatically.
chunks = list(torch.split(audio_tensor, chunk_size, dim=split_dim))
return chunks
def reconstruct_audio(chunks: list[torch.Tensor]) -> torch.Tensor:
if not chunks:
return torch.empty(0)
if len(chunks) == 1 and chunks[0].dim() == 0:
return chunks[0]
concat_dim = -1
try:
reconstructed_tensor = torch.cat(chunks, dim=concat_dim)
except RuntimeError as e:
raise RuntimeError(
f"Failed to concatenate audio chunks. Ensure chunks have compatible shapes "
f"for concatenation along dimension {concat_dim}. Original error: {e}"
)
return reconstructed_tensor

96
app.py
View File

@@ -1,96 +0,0 @@
import argparse
import torch
import torchaudio
import torchcodec
import tqdm
import AudioUtils
from generator import SISUGenerator
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--model", type=str, help="Model to use for upscaling")
parser.add_argument(
"--clip_length",
type=int,
default=16384,
help="Internal clip length, leave unspecified if unsure",
)
parser.add_argument(
"--sample_rate", type=int, default=44100, help="Output clip sample rate"
)
parser.add_argument(
"--bitrate",
type=int,
default=192000,
help="Output clip bitrate",
)
parser.add_argument("-i", "--input", type=str, help="Input audio file")
parser.add_argument("-o", "--output", type=str, help="Output audio file")
args = parser.parse_args()
if args.sample_rate < 8000:
print(
"Sample rate cannot be lower than 8000! (44100 is recommended for base models)"
)
exit()
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
generator = SISUGenerator().to(device)
generator = torch.compile(generator)
models_dir = args.model
clip_length = args.clip_length
input_audio = args.input
output_audio = args.output
if models_dir:
ckpt = torch.load(models_dir, map_location=device)
generator.load_state_dict(ckpt["G"])
else:
print(
"Generator model (--model) isn't specified. Do you have the trained model? If not, you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)"
)
def start():
# To Mono!
decoder = torchcodec.decoders.AudioDecoder(input_audio)
decoded_samples = decoder.get_all_samples()
audio = decoded_samples.data
original_sample_rate = decoded_samples.sample_rate
audio = AudioUtils.stereo_tensor_to_mono(audio)
resample_transform = torchaudio.transforms.Resample(
original_sample_rate, args.sample_rate
)
audio = resample_transform(audio)
splitted_audio = AudioUtils.split_audio(audio, clip_length)
splitted_audio_on_device = [t.to(device) for t in splitted_audio]
processed_audio = []
for clip in tqdm.tqdm(splitted_audio_on_device, desc="Processing..."):
processed_audio.append(generator(clip))
reconstructed_audio = AudioUtils.reconstruct_audio(processed_audio)
print(f"Saving {output_audio}!")
torchaudio.save_with_torchcodec(
uri=output_audio,
src=reconstructed_audio,
sample_rate=args.sample_rate,
channels_first=True,
compression=args.bitrate,
)
start()

104
data.py
View File

@@ -1,73 +1,53 @@
from torch.utils.data import Dataset
import torch.nn.functional as F
import torch
import torchaudio
import os import os
import random import random
import torchaudio.transforms as T
import torchaudio
import torchcodec.decoders as decoders
import tqdm
from torch.utils.data import Dataset
import AudioUtils import AudioUtils
class AudioDataset(Dataset): class AudioDataset(Dataset):
audio_sample_rates = [11025] audio_sample_rates = [11025]
MAX_LENGTH = 44100 # Define your desired maximum length here
def __init__(self, input_dir, clip_length=16384): def __init__(self, input_dir, device):
input_files = [ self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
os.path.join(root, f) self.device = device
for root, _, files in os.walk(input_dir)
for f in files
if f.endswith(".wav") or f.endswith(".mp3") or f.endswith(".flac")
]
data = []
for audio_clip in tqdm.tqdm(
input_files, desc=f"Processing {len(input_files)} audio file(s)"
):
decoder = decoders.AudioDecoder(audio_clip)
decoded_samples = decoder.get_all_samples()
audio = decoded_samples.data
original_sample_rate = decoded_samples.sample_rate
audio = AudioUtils.stereo_tensor_to_mono(audio)
# Generate low-quality audio with random downsampling
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(
original_sample_rate, mangled_sample_rate
)
resample_transform_high = torchaudio.transforms.Resample(
mangled_sample_rate, original_sample_rate
)
low_audio = resample_transform_low(audio)
low_audio = resample_transform_high(low_audio)
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length)
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(
splitted_high_quality_audio[-1], clip_length
)
splitted_low_quality_audio = AudioUtils.split_audio(low_audio, clip_length)
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(
splitted_low_quality_audio[-1], clip_length
)
for high_quality_sample, low_quality_sample in zip(
splitted_high_quality_audio, splitted_low_quality_audio
):
data.append(
(
(high_quality_sample, low_quality_sample),
(original_sample_rate, mangled_sample_rate),
)
)
self.audio_data = data
def __len__(self): def __len__(self):
return len(self.audio_data) return len(self.input_files)
def __getitem__(self, idx): def __getitem__(self, idx):
return self.audio_data[idx] # Load high-quality audio
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
# Generate low-quality audio with random downsampling
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
low_quality_audio = resample_transform_low(high_quality_audio)
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
low_quality_audio = resample_transform_high(low_quality_audio)
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio)
# Pad or truncate high-quality audio
if high_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - high_quality_audio.shape[1]
high_quality_audio = F.pad(high_quality_audio, (0, padding))
elif high_quality_audio.shape[1] > self.MAX_LENGTH:
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH]
# Pad or truncate low-quality audio
if low_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - low_quality_audio.shape[1]
low_quality_audio = F.pad(low_quality_audio, (0, padding))
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
high_quality_audio = high_quality_audio.to(self.device)
low_quality_audio = low_quality_audio.to(self.device)
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)

View File

@@ -1,16 +1,8 @@
import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.utils as utils import torch.nn.utils as utils
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True):
def discriminator_block(
in_channels,
out_channels,
kernel_size=3,
stride=1,
dilation=1,
spectral_norm=True,
use_instance_norm=True,
):
padding = (kernel_size // 2) * dilation padding = (kernel_size // 2) * dilation
conv_layer = nn.Conv1d( conv_layer = nn.Conv1d(
in_channels, in_channels,
@@ -18,7 +10,7 @@ def discriminator_block(
kernel_size=kernel_size, kernel_size=kernel_size,
stride=stride, stride=stride,
dilation=dilation, dilation=dilation,
padding=padding, padding=padding
) )
if spectral_norm: if spectral_norm:
@@ -32,7 +24,6 @@ def discriminator_block(
return nn.Sequential(*layers) return nn.Sequential(*layers)
class AttentionBlock(nn.Module): class AttentionBlock(nn.Module):
def __init__(self, channels): def __init__(self, channels):
super(AttentionBlock, self).__init__() super(AttentionBlock, self).__init__()
@@ -40,86 +31,27 @@ class AttentionBlock(nn.Module):
nn.Conv1d(channels, channels // 4, kernel_size=1), nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(inplace=True), nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1), nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid(), nn.Sigmoid()
) )
def forward(self, x): def forward(self, x):
attention_weights = self.attention(x) attention_weights = self.attention(x)
return x * attention_weights return x * attention_weights
class SISUDiscriminator(nn.Module): class SISUDiscriminator(nn.Module):
def __init__(self, base_channels=16): def __init__(self, base_channels=16):
super(SISUDiscriminator, self).__init__() super(SISUDiscriminator, self).__init__()
layers = base_channels layers = base_channels
self.model = nn.Sequential( self.model = nn.Sequential(
discriminator_block( discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False),
1, discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
layers, discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True),
kernel_size=7,
stride=1,
spectral_norm=True,
use_instance_norm=False,
),
discriminator_block(
layers,
layers * 2,
kernel_size=5,
stride=2,
spectral_norm=True,
use_instance_norm=True,
),
discriminator_block(
layers * 2,
layers * 4,
kernel_size=5,
stride=1,
dilation=2,
spectral_norm=True,
use_instance_norm=True,
),
AttentionBlock(layers * 4), AttentionBlock(layers * 4),
discriminator_block( discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True),
layers * 4, discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
layers * 8, discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
kernel_size=5, discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
stride=1, discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False)
dilation=4,
spectral_norm=True,
use_instance_norm=True,
),
discriminator_block(
layers * 8,
layers * 4,
kernel_size=5,
stride=2,
spectral_norm=True,
use_instance_norm=True,
),
discriminator_block(
layers * 4,
layers * 2,
kernel_size=3,
stride=1,
spectral_norm=True,
use_instance_norm=True,
),
discriminator_block(
layers * 2,
layers,
kernel_size=3,
stride=1,
spectral_norm=True,
use_instance_norm=True,
),
discriminator_block(
layers,
1,
kernel_size=3,
stride=1,
spectral_norm=False,
use_instance_norm=False,
),
) )
self.global_avg_pool = nn.AdaptiveAvgPool1d(1) self.global_avg_pool = nn.AdaptiveAvgPool1d(1)

View File

@@ -2,22 +2,20 @@ import json
filepath = "my_data.json" filepath = "my_data.json"
def write_data(filepath, data, debug=False): def write_data(filepath, data):
try: try:
with open(filepath, 'w') as f: with open(filepath, 'w') as f:
json.dump(data, f, indent=4) # Use indent for pretty formatting json.dump(data, f, indent=4) # Use indent for pretty formatting
if debug: print(f"Data written to '{filepath}'")
print(f"Data written to '{filepath}'")
except Exception as e: except Exception as e:
print(f"Error writing to file: {e}") print(f"Error writing to file: {e}")
def read_data(filepath, debug=False): def read_data(filepath):
try: try:
with open(filepath, 'r') as f: with open(filepath, 'r') as f:
data = json.load(f) data = json.load(f)
if debug: print(f"Data read from '{filepath}'")
print(f"Data read from '{filepath}'")
return data return data
except FileNotFoundError: except FileNotFoundError:
print(f"File not found: {filepath}") print(f"File not found: {filepath}")

View File

@@ -1,6 +1,6 @@
import torch
import torch.nn as nn import torch.nn as nn
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1): def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
return nn.Sequential( return nn.Sequential(
nn.Conv1d( nn.Conv1d(
@@ -8,32 +8,29 @@ def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
out_channels, out_channels,
kernel_size=kernel_size, kernel_size=kernel_size,
dilation=dilation, dilation=dilation,
padding=(kernel_size // 2) * dilation, padding=(kernel_size // 2) * dilation
), ),
nn.InstanceNorm1d(out_channels), nn.InstanceNorm1d(out_channels),
nn.PReLU(), nn.PReLU()
) )
class AttentionBlock(nn.Module): class AttentionBlock(nn.Module):
""" """
Simple Channel Attention Block. Learns to weight channels based on their importance. Simple Channel Attention Block. Learns to weight channels based on their importance.
""" """
def __init__(self, channels): def __init__(self, channels):
super(AttentionBlock, self).__init__() super(AttentionBlock, self).__init__()
self.attention = nn.Sequential( self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1), nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(inplace=True), nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1), nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid(), nn.Sigmoid()
) )
def forward(self, x): def forward(self, x):
attention_weights = self.attention(x) attention_weights = self.attention(x)
return x * attention_weights return x * attention_weights
class ResidualInResidualBlock(nn.Module): class ResidualInResidualBlock(nn.Module):
def __init__(self, channels, num_convs=3): def __init__(self, channels, num_convs=3):
super(ResidualInResidualBlock, self).__init__() super(ResidualInResidualBlock, self).__init__()
@@ -50,7 +47,6 @@ class ResidualInResidualBlock(nn.Module):
x = self.attention(x) x = self.attention(x)
return x + residual return x + residual
class SISUGenerator(nn.Module): class SISUGenerator(nn.Module):
def __init__(self, channels=16, num_rirb=4, alpha=1.0): def __init__(self, channels=16, num_rirb=4, alpha=1.0):
super(SISUGenerator, self).__init__() super(SISUGenerator, self).__init__()

View File

@@ -1,273 +1,194 @@
import argparse
import os
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.optim as optim import torch.optim as optim
import torchaudio.transforms as T
import torch.nn.functional as F
import torchaudio
import tqdm import tqdm
from torch.amp import GradScaler, autocast
import argparse
import math
import os
from torch.utils.data import random_split
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
import training_utils import AudioUtils
from data import AudioDataset from data import AudioDataset
from discriminator import SISUDiscriminator
from generator import SISUGenerator from generator import SISUGenerator
from training_utils import discriminator_train, generator_train from discriminator import SISUDiscriminator
from training_utils import discriminator_train, generator_train
import file_utils as Data
import torchaudio.transforms as T
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--generator", type=str, default=None,
help="Path to the generator model file")
parser.add_argument("--discriminator", type=str, default=None,
help="Path to the discriminator model file")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
parser.add_argument("--debug", action="store_true", help="Print debug logs")
parser.add_argument("--continue_training", action="store_true", help="Continue training using temp_generator and temp_discriminator models")
# ---------------------------
# Argument parsing
# ---------------------------
parser = argparse.ArgumentParser(description="Training script (safer defaults)")
parser.add_argument("--resume", action="store_true", help="Resume training")
parser.add_argument(
"--device", type=str, default="cuda", help="Device (cuda, cpu, mps)"
)
parser.add_argument(
"--epochs", type=int, default=5000, help="Number of training epochs"
)
parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
parser.add_argument("--num_workers", type=int, default=2, help="DataLoader num_workers")
parser.add_argument("--debug", action="store_true", help="Print debug logs")
parser.add_argument(
"--no_pin_memory", action="store_true", help="Disable pin_memory even on CUDA"
)
args = parser.parse_args() args = parser.parse_args()
# --------------------------- device = torch.device(args.device if torch.cuda.is_available() else "cpu")
# Device setup
# ---------------------------
# Use requested device only if available
device = torch.device(
args.device if (args.device != "cuda" or torch.cuda.is_available()) else "cpu"
)
print(f"Using device: {device}") print(f"Using device: {device}")
# sensible performance flags
if device.type == "cuda":
torch.backends.cudnn.benchmark = True
# optional: torch.set_float32_matmul_precision("high")
debug = args.debug
# --------------------------- # Parameters
# Audio transforms
# ---------------------------
sample_rate = 44100 sample_rate = 44100
n_fft = 1024 n_fft = 2048
hop_length = 256
win_length = n_fft win_length = n_fft
hop_length = n_fft // 4 n_mels = 128
n_mels = 96 n_mfcc = 20 # If using MFCC
# n_mfcc = 13
# mfcc_transform = T.MFCC( mfcc_transform = T.MFCC(
# sample_rate=sample_rate, sample_rate,
# n_mfcc=n_mfcc, n_mfcc,
# melkwargs=dict( melkwargs = {'n_fft': n_fft, 'hop_length': hop_length}
# n_fft=n_fft, ).to(device)
# hop_length=hop_length,
# win_length=win_length,
# n_mels=n_mels,
# power=1.0,
# ),
# ).to(device)
mel_transform = T.MelSpectrogram( mel_transform = T.MelSpectrogram(
sample_rate=sample_rate, sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length,
n_fft=n_fft, win_length=win_length, n_mels=n_mels, power=1.0 # Magnitude Mel
hop_length=hop_length,
win_length=win_length,
n_mels=n_mels,
power=1.0,
).to(device) ).to(device)
stft_transform = T.Spectrogram( stft_transform = T.Spectrogram(
n_fft=n_fft, win_length=win_length, hop_length=hop_length n_fft=n_fft, win_length=win_length, hop_length=hop_length
).to(device) ).to(device)
# training_utils.init(mel_transform, stft_transform, mfcc_transform) debug = args.debug
training_utils.init(mel_transform, stft_transform)
# --------------------------- # Initialize dataset and dataloader
# Dataset / DataLoader dataset_dir = './dataset/good'
# --------------------------- dataset = AudioDataset(dataset_dir, device)
dataset_dir = "./dataset/good" models_dir = "models"
dataset = AudioDataset(dataset_dir) os.makedirs(models_dir, exist_ok=True)
audio_output_dir = "output"
os.makedirs(audio_output_dir, exist_ok=True)
train_loader = DataLoader( # ========= SINGLE =========
dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
persistent_workers=True,
)
# --------------------------- train_data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
# Models
# ---------------------------
generator = SISUGenerator().to(device)
discriminator = SISUDiscriminator().to(device)
generator = torch.compile(generator)
discriminator = torch.compile(discriminator)
# --------------------------- # ========= MODELS =========
# Losses / Optimizers / Scalers
# --------------------------- generator = SISUGenerator()
discriminator = SISUDiscriminator()
epoch: int = args.epoch
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
if args.continue_training:
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
epoch = epoch_from_file["epoch"] + 1
else:
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
if args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
generator = generator.to(device)
discriminator = discriminator.to(device)
# Loss
criterion_g = nn.BCEWithLogitsLoss() criterion_g = nn.BCEWithLogitsLoss()
criterion_d = nn.BCEWithLogitsLoss() criterion_d = nn.BCEWithLogitsLoss()
optimizer_g = optim.AdamW( # Optimizers
generator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001 optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
) optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
optimizer_d = optim.AdamW(
discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
)
# Use modern GradScaler signature; choose device_type based on runtime device. # Scheduler
scaler = GradScaler(device=device) scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau( def start_training():
optimizer_g, mode="min", factor=0.5, patience=5 generator_epochs = 5000
) for generator_epoch in range(generator_epochs):
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau( low_quality_audio = (torch.empty((1)), 1)
optimizer_d, mode="min", factor=0.5, patience=5 high_quality_audio = (torch.empty((1)), 1)
) ai_enhanced_audio = (torch.empty((1)), 1)
# --------------------------- times_correct = 0
# Checkpoint helpers
# --------------------------- # ========= TRAINING =========
models_dir = "./models" for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
os.makedirs(models_dir, exist_ok=True) # for high_quality_clip, low_quality_clip in train_data_loader:
high_quality_sample = (high_quality_clip[0], high_quality_clip[1])
low_quality_sample = (low_quality_clip[0], low_quality_clip[1])
# ========= LABELS =========
batch_size = high_quality_clip[0].size(0)
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
# ========= DISCRIMINATOR =========
discriminator.train()
d_loss = discriminator_train(
high_quality_sample,
low_quality_sample,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
# ========= GENERATOR =========
generator.train()
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
low_quality_sample,
high_quality_sample,
real_labels,
generator,
discriminator,
criterion_d,
optimizer_g,
device,
mel_transform,
stft_transform,
mfcc_transform
)
if debug:
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
scheduler_d.step(d_loss.detach())
scheduler_g.step(adversarial_loss.detach())
# ========= SAVE LATEST AUDIO =========
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0])
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0])
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0])
new_epoch = generator_epoch+epoch
if generator_epoch % 25 == 0:
print(f"Saved epoch {new_epoch}!")
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
#if debug:
# print(generator.state_dict().keys())
# print(discriminator.state_dict().keys())
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
def save_ckpt(path, epoch): torch.save(discriminator, "models/epoch-5000-discriminator.pt")
torch.save( torch.save(generator, "models/epoch-5000-generator.pt")
{ print("Training complete!")
"epoch": epoch,
"G": generator.state_dict(),
"D": discriminator.state_dict(),
"optG": optimizer_g.state_dict(),
"optD": optimizer_d.state_dict(),
"scaler": scaler.state_dict(),
"schedG": scheduler_g.state_dict(),
"schedD": scheduler_d.state_dict(),
},
path,
)
start_training()
start_epoch = 0
if args.resume:
ckpt = torch.load(os.path.join(models_dir, "last.pt"), map_location=device)
generator.load_state_dict(ckpt["G"])
discriminator.load_state_dict(ckpt["D"])
optimizer_g.load_state_dict(ckpt["optG"])
optimizer_d.load_state_dict(ckpt["optD"])
scaler.load_state_dict(ckpt["scaler"])
scheduler_g.load_state_dict(ckpt["schedG"])
scheduler_d.load_state_dict(ckpt["schedD"])
start_epoch = ckpt.get("epoch", 1)
# ---------------------------
# Training loop (safer)
# ---------------------------
if not train_loader or not train_loader.batch_size:
print("There is no data to train with! Exiting...")
exit()
max_batch = max(1, train_loader.batch_size)
real_buf = torch.full((max_batch, 1), 0.9, device=device) # label smoothing
fake_buf = torch.zeros(max_batch, 1, device=device)
try:
for epoch in range(start_epoch, args.epochs):
generator.train()
discriminator.train()
running_d, running_g, steps = 0.0, 0.0, 0
for i, (
(high_quality, low_quality),
(high_sample_rate, low_sample_rate),
) in enumerate(tqdm.tqdm(train_loader, desc=f"Epoch {epoch}")):
batch_size = high_quality.size(0)
high_quality = high_quality.to(device, non_blocking=True)
low_quality = low_quality.to(device, non_blocking=True)
real_labels = real_buf[:batch_size]
fake_labels = fake_buf[:batch_size]
# --- Discriminator ---
optimizer_d.zero_grad(set_to_none=True)
with autocast(device_type=device.type):
d_loss = discriminator_train(
high_quality,
low_quality,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
)
scaler.scale(d_loss).backward()
scaler.unscale_(optimizer_d)
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), 1.0)
scaler.step(optimizer_d)
# --- Generator ---
optimizer_g.zero_grad(set_to_none=True)
with autocast(device_type=device.type):
g_out, g_total, g_adv = generator_train(
low_quality,
high_quality,
real_labels,
generator,
discriminator,
criterion_d,
)
scaler.scale(g_total).backward()
scaler.unscale_(optimizer_g)
torch.nn.utils.clip_grad_norm_(generator.parameters(), 1.0)
scaler.step(optimizer_g)
scaler.update()
running_d += float(d_loss.detach().cpu().item())
running_g += float(g_total.detach().cpu().item())
steps += 1
# epoch averages & schedulers
if steps == 0:
print("No steps in epoch (empty dataloader?). Exiting.")
break
mean_d = running_d / steps
mean_g = running_g / steps
scheduler_d.step(mean_d)
scheduler_g.step(mean_g)
save_ckpt(os.path.join(models_dir, "last.pt"), epoch)
print(f"Epoch {epoch} done | D {mean_d:.4f} | G {mean_g:.4f}")
except Exception:
try:
save_ckpt(os.path.join(models_dir, "crash_last.pt"), epoch)
print(f"Saved crash checkpoint for epoch {epoch}")
except Exception as e:
print("Failed saving crash checkpoint:", e)
raise
try:
torch.save(generator.state_dict(), os.path.join(models_dir, "final_generator.pt"))
torch.save(
discriminator.state_dict(), os.path.join(models_dir, "final_discriminator.pt")
)
except Exception as e:
print("Failed to save final states:", e)
print("Training finished.")

View File

@@ -1,87 +1,90 @@
import torch import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
import torchaudio.transforms as T import torchaudio.transforms as T
from utils.MultiResolutionSTFTLoss import MultiResolutionSTFTLoss def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
mfccs_true = mfcc_transform(y_true)
mfccs_pred = mfcc_transform(y_pred)
mel_transform: T.MelSpectrogram min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
stft_transform: T.Spectrogram mfccs_true = mfccs_true[:, :, :min_len]
# mfcc_transform: T.MFCC mfccs_pred = mfccs_pred[:, :, :min_len]
loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
# def init(mel_trans: T.MelSpectrogram, stft_trans: T.Spectrogram, mfcc_trans: T.MFCC): def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
# """Initializes the global transform variables for the module.""" mel_spec_true = mel_transform(y_true)
# global mel_transform, stft_transform, mfcc_transform mel_spec_pred = mel_transform(y_pred)
# mel_transform = mel_trans
# stft_transform = stft_trans
# mfcc_transform = mfcc_trans
# Ensure same time dimension length (due to potential framing differences)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
def init(mel_trans: T.MelSpectrogram, stft_trans: T.Spectrogram): # L1 Loss (Mean Absolute Error)
"""Initializes the global transform variables for the module.""" loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
global mel_transform, stft_transform return loss
mel_transform = mel_trans
stft_transform = stft_trans
def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
# def mfcc_loss(y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor: min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
# """Computes the Mean Squared Error (MSE) loss on MFCCs.""" mel_spec_true = mel_spec_true[..., :min_len]
# mfccs_true = mfcc_transform(y_true) mel_spec_pred = mel_spec_pred[..., :min_len]
# mfccs_pred = mfcc_transform(y_pred)
# return F.mse_loss(mfccs_pred, mfccs_true)
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
return loss
# def mel_spectrogram_loss( def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
# y_true: torch.Tensor, y_pred: torch.Tensor, loss_type: str = "l1" stft_mag_true = stft_transform(y_true)
# ) -> torch.Tensor: stft_mag_pred = stft_transform(y_pred)
# """Calculates L1 or L2 loss on the Mel Spectrogram."""
# mel_spec_true = mel_transform(y_true)
# mel_spec_pred = mel_transform(y_pred)
# if loss_type == "l1":
# return F.l1_loss(mel_spec_pred, mel_spec_true)
# elif loss_type == "l2":
# return F.mse_loss(mel_spec_pred, mel_spec_true)
# else:
# raise ValueError("loss_type must be 'l1' or 'l2'")
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
# def log_stft_magnitude_loss( loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
# y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7 return loss
# ) -> torch.Tensor:
# """Calculates L1 loss on the log STFT magnitude."""
# stft_mag_true = stft_transform(y_true)
# stft_mag_pred = stft_transform(y_pred)
# return F.l1_loss(torch.log(stft_mag_pred + eps), torch.log(stft_mag_true + eps))
def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
stft_loss_fn = MultiResolutionSTFTLoss( min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240] stft_mag_true = stft_mag_true[..., :min_len]
) stft_mag_pred = stft_mag_pred[..., :min_len]
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
def discriminator_train( loss = torch.mean(norm_diff / (norm_true + eps))
high_quality, return loss
low_quality,
real_labels, def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
fake_labels, optimizer.zero_grad()
discriminator,
generator, # Forward pass for real samples
criterion, discriminator_decision_from_real = discriminator(high_quality[0])
):
discriminator_decision_from_real = discriminator(high_quality)
d_loss_real = criterion(discriminator_decision_from_real, real_labels) d_loss_real = criterion(discriminator_decision_from_real, real_labels)
with torch.no_grad(): with torch.no_grad():
generator_output = generator(low_quality) generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output) discriminator_decision_from_fake = discriminator(generator_output)
d_loss_fake = criterion( d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
discriminator_decision_from_fake,
fake_labels.expand_as(discriminator_decision_from_fake),
)
d_loss = (d_loss_real + d_loss_fake) / 2.0 d_loss = (d_loss_real + d_loss_fake) / 2.0
return d_loss d_loss.backward()
# Optional: Gradient Clipping (can be helpful)
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer.step()
return d_loss
def generator_train( def generator_train(
low_quality, low_quality,
@@ -90,65 +93,52 @@ def generator_train(
generator, generator,
discriminator, discriminator,
adv_criterion, adv_criterion,
g_optimizer,
device,
mel_transform: T.MelSpectrogram,
stft_transform: T.Spectrogram,
mfcc_transform: T.MFCC,
lambda_adv: float = 1.0, lambda_adv: float = 1.0,
lambda_feat: float = 10.0, lambda_mel_l1: float = 10.0,
lambda_stft: float = 2.5, lambda_log_stft: float = 1.0,
lambda_mfcc: float = 1.0
): ):
generator_output = generator(low_quality) g_optimizer.zero_grad()
generator_output = generator(low_quality[0])
discriminator_decision = discriminator(generator_output) discriminator_decision = discriminator(generator_output)
# adversarial_loss = adv_criterion( adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
# discriminator_decision, real_labels.expand_as(discriminator_decision)
# )
adversarial_loss = adv_criterion(discriminator_decision, real_labels)
combined_loss = lambda_adv * adversarial_loss mel_l1 = 0.0
log_stft_l1 = 0.0
mfcc_l = 0.0
stft_losses = stft_loss_fn(high_quality, generator_output) # Calculate Mel L1 Loss if weight is positive
stft_loss = stft_losses["total"] if lambda_mel_l1 > 0:
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output)
combined_loss = (lambda_adv * adversarial_loss) + (lambda_stft * stft_loss) # Calculate Log STFT L1 Loss if weight is positive
if lambda_log_stft > 0:
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality[0], generator_output)
return generator_output, combined_loss, adversarial_loss # Calculate MFCC Loss if weight is positive
if lambda_mfcc > 0:
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality[0], generator_output)
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
# def generator_train( combined_loss = (lambda_adv * adversarial_loss) + \
# low_quality, (lambda_mel_l1 * mel_l1_tensor) + \
# high_quality, (lambda_log_stft * log_stft_l1_tensor) + \
# real_labels, (lambda_mfcc * mfcc_l_tensor)
# generator,
# discriminator,
# adv_criterion,
# lambda_adv: float = 1.0,
# lambda_mel_l1: float = 10.0,
# lambda_log_stft: float = 1.0,
# ): combined_loss.backward()
# generator_output = generator(low_quality) # Optional: Gradient Clipping
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
g_optimizer.step()
# discriminator_decision = discriminator(generator_output) # 6. Return values for logging
# adversarial_loss = adv_criterion( return generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor
# discriminator_decision, real_labels.expand_as(discriminator_decision)
# )
# combined_loss = lambda_adv * adversarial_loss
# if lambda_mel_l1 > 0:
# mel_l1_loss = mel_spectrogram_loss(high_quality, generator_output, "l1")
# combined_loss += lambda_mel_l1 * mel_l1_loss
# else:
# mel_l1_loss = torch.tensor(0.0, device=low_quality.device) # For logging
# if lambda_log_stft > 0:
# log_stft_loss = log_stft_magnitude_loss(high_quality, generator_output)
# combined_loss += lambda_log_stft * log_stft_loss
# else:
# log_stft_loss = torch.tensor(0.0, device=low_quality.device)
# if lambda_mfcc > 0:
# mfcc_loss_val = mfcc_loss(high_quality, generator_output)
# combined_loss += lambda_mfcc * mfcc_loss_val
# else:
# mfcc_loss_val = torch.tensor(0.0, device=low_quality.device)
# return generator_output, combined_loss, adversarial_loss

View File

@@ -1,62 +0,0 @@
from typing import Dict, List
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio.transforms as T
class MultiResolutionSTFTLoss(nn.Module):
"""
Computes a loss based on multiple STFT resolutions, including both
spectral convergence and log STFT magnitude components.
"""
def __init__(
self,
fft_sizes: List[int] = [1024, 2048, 512],
hop_sizes: List[int] = [120, 240, 50],
win_lengths: List[int] = [600, 1200, 240],
eps: float = 1e-7,
):
super().__init__()
self.stft_transforms = nn.ModuleList(
[
T.Spectrogram(
n_fft=n_fft, win_length=win_len, hop_length=hop_len, power=None
)
for n_fft, hop_len, win_len in zip(fft_sizes, hop_sizes, win_lengths)
]
)
self.eps = eps
def forward(
self, y_true: torch.Tensor, y_pred: torch.Tensor
) -> Dict[str, torch.Tensor]:
sc_loss = 0.0 # Spectral Convergence Loss
mag_loss = 0.0 # Log STFT Magnitude Loss
for stft in self.stft_transforms:
stft.to(y_pred.device) # Ensure transform is on the correct device
# Get complex STFTs
stft_true = stft(y_true)
stft_pred = stft(y_pred)
# Get magnitudes
stft_mag_true = torch.abs(stft_true)
stft_mag_pred = torch.abs(stft_pred)
# --- Spectral Convergence Loss ---
# || |S_true| - |S_pred| ||_F / || |S_true| ||_F
norm_true = torch.linalg.norm(stft_mag_true, dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, dim=(-2, -1))
sc_loss += torch.mean(norm_diff / (norm_true + self.eps))
# --- Log STFT Magnitude Loss ---
mag_loss += F.l1_loss(
torch.log(stft_mag_pred + self.eps), torch.log(stft_mag_true + self.eps)
)
total_loss = sc_loss + mag_loss
return {"total": total_loss, "sc": sc_loss, "mag": mag_loss}

View File