Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
3c18a3e962 |
@@ -16,56 +16,3 @@ def stretch_tensor(tensor, target_length):
|
|||||||
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
|
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
|
||||||
|
|
||||||
return tensor
|
return tensor
|
||||||
|
|
||||||
def pad_tensor(audio_tensor: torch.Tensor, target_length: int = 128):
|
|
||||||
current_length = audio_tensor.shape[-1]
|
|
||||||
|
|
||||||
if current_length < target_length:
|
|
||||||
padding_needed = target_length - current_length
|
|
||||||
|
|
||||||
padding_tuple = (0, padding_needed)
|
|
||||||
padded_audio_tensor = F.pad(audio_tensor, padding_tuple, mode='constant', value=0)
|
|
||||||
else:
|
|
||||||
padded_audio_tensor = audio_tensor
|
|
||||||
|
|
||||||
return padded_audio_tensor
|
|
||||||
|
|
||||||
def split_audio(audio_tensor: torch.Tensor, chunk_size: int = 128) -> list[torch.Tensor]:
|
|
||||||
if not isinstance(chunk_size, int) or chunk_size <= 0:
|
|
||||||
raise ValueError("chunk_size must be a positive integer.")
|
|
||||||
|
|
||||||
# Handle scalar tensor edge case if necessary
|
|
||||||
if audio_tensor.dim() == 0:
|
|
||||||
return [audio_tensor] if audio_tensor.numel() > 0 else []
|
|
||||||
|
|
||||||
# Identify the dimension to split (usually the last one, representing time/samples)
|
|
||||||
split_dim = -1
|
|
||||||
num_samples = audio_tensor.shape[split_dim]
|
|
||||||
|
|
||||||
if num_samples == 0:
|
|
||||||
return [] # Return empty list if the dimension to split is empty
|
|
||||||
|
|
||||||
# Use torch.split to divide the tensor into chunks
|
|
||||||
# It handles the last chunk being potentially smaller automatically.
|
|
||||||
chunks = list(torch.split(audio_tensor, chunk_size, dim=split_dim))
|
|
||||||
|
|
||||||
return chunks
|
|
||||||
|
|
||||||
def reconstruct_audio(chunks: list[torch.Tensor]) -> torch.Tensor:
|
|
||||||
if not chunks:
|
|
||||||
return torch.empty(0)
|
|
||||||
|
|
||||||
if len(chunks) == 1 and chunks[0].dim() == 0:
|
|
||||||
return chunks[0]
|
|
||||||
|
|
||||||
concat_dim = -1
|
|
||||||
|
|
||||||
try:
|
|
||||||
reconstructed_tensor = torch.cat(chunks, dim=concat_dim)
|
|
||||||
except RuntimeError as e:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"Failed to concatenate audio chunks. Ensure chunks have compatible shapes "
|
|
||||||
f"for concatenation along dimension {concat_dim}. Original error: {e}"
|
|
||||||
)
|
|
||||||
|
|
||||||
return reconstructed_tensor
|
|
||||||
|
96
app.py
96
app.py
@@ -1,96 +0,0 @@
|
|||||||
import argparse
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torchaudio
|
|
||||||
import torchcodec
|
|
||||||
import tqdm
|
|
||||||
|
|
||||||
import AudioUtils
|
|
||||||
from generator import SISUGenerator
|
|
||||||
|
|
||||||
# Init script argument parser
|
|
||||||
parser = argparse.ArgumentParser(description="Training script")
|
|
||||||
parser.add_argument("--device", type=str, default="cpu", help="Select device")
|
|
||||||
parser.add_argument("--model", type=str, help="Model to use for upscaling")
|
|
||||||
parser.add_argument(
|
|
||||||
"--clip_length",
|
|
||||||
type=int,
|
|
||||||
default=16384,
|
|
||||||
help="Internal clip length, leave unspecified if unsure",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--sample_rate", type=int, default=44100, help="Output clip sample rate"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--bitrate",
|
|
||||||
type=int,
|
|
||||||
default=192000,
|
|
||||||
help="Output clip bitrate",
|
|
||||||
)
|
|
||||||
parser.add_argument("-i", "--input", type=str, help="Input audio file")
|
|
||||||
parser.add_argument("-o", "--output", type=str, help="Output audio file")
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
if args.sample_rate < 8000:
|
|
||||||
print(
|
|
||||||
"Sample rate cannot be lower than 8000! (44100 is recommended for base models)"
|
|
||||||
)
|
|
||||||
exit()
|
|
||||||
|
|
||||||
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
|
|
||||||
print(f"Using device: {device}")
|
|
||||||
|
|
||||||
generator = SISUGenerator().to(device)
|
|
||||||
|
|
||||||
generator = torch.compile(generator)
|
|
||||||
|
|
||||||
models_dir = args.model
|
|
||||||
clip_length = args.clip_length
|
|
||||||
input_audio = args.input
|
|
||||||
output_audio = args.output
|
|
||||||
|
|
||||||
if models_dir:
|
|
||||||
ckpt = torch.load(models_dir, map_location=device)
|
|
||||||
generator.load_state_dict(ckpt["G"])
|
|
||||||
else:
|
|
||||||
print(
|
|
||||||
"Generator model (--model) isn't specified. Do you have the trained model? If not, you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def start():
|
|
||||||
# To Mono!
|
|
||||||
decoder = torchcodec.decoders.AudioDecoder(input_audio)
|
|
||||||
|
|
||||||
decoded_samples = decoder.get_all_samples()
|
|
||||||
audio = decoded_samples.data
|
|
||||||
original_sample_rate = decoded_samples.sample_rate
|
|
||||||
|
|
||||||
audio = AudioUtils.stereo_tensor_to_mono(audio)
|
|
||||||
|
|
||||||
resample_transform = torchaudio.transforms.Resample(
|
|
||||||
original_sample_rate, args.sample_rate
|
|
||||||
)
|
|
||||||
|
|
||||||
audio = resample_transform(audio)
|
|
||||||
|
|
||||||
splitted_audio = AudioUtils.split_audio(audio, clip_length)
|
|
||||||
splitted_audio_on_device = [t.to(device) for t in splitted_audio]
|
|
||||||
processed_audio = []
|
|
||||||
|
|
||||||
for clip in tqdm.tqdm(splitted_audio_on_device, desc="Processing..."):
|
|
||||||
processed_audio.append(generator(clip))
|
|
||||||
|
|
||||||
reconstructed_audio = AudioUtils.reconstruct_audio(processed_audio)
|
|
||||||
print(f"Saving {output_audio}!")
|
|
||||||
torchaudio.save_with_torchcodec(
|
|
||||||
uri=output_audio,
|
|
||||||
src=reconstructed_audio,
|
|
||||||
sample_rate=args.sample_rate,
|
|
||||||
channels_first=True,
|
|
||||||
compression=args.bitrate,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
start()
|
|
104
data.py
104
data.py
@@ -1,73 +1,53 @@
|
|||||||
|
from torch.utils.data import Dataset
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
|
import torchaudio.transforms as T
|
||||||
import torchaudio
|
|
||||||
import torchcodec.decoders as decoders
|
|
||||||
import tqdm
|
|
||||||
from torch.utils.data import Dataset
|
|
||||||
|
|
||||||
import AudioUtils
|
import AudioUtils
|
||||||
|
|
||||||
|
|
||||||
class AudioDataset(Dataset):
|
class AudioDataset(Dataset):
|
||||||
audio_sample_rates = [11025]
|
audio_sample_rates = [11025]
|
||||||
|
MAX_LENGTH = 44100 # Define your desired maximum length here
|
||||||
|
|
||||||
def __init__(self, input_dir, clip_length=16384):
|
def __init__(self, input_dir, device):
|
||||||
input_files = [
|
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
|
||||||
os.path.join(root, f)
|
self.device = device
|
||||||
for root, _, files in os.walk(input_dir)
|
|
||||||
for f in files
|
|
||||||
if f.endswith(".wav") or f.endswith(".mp3") or f.endswith(".flac")
|
|
||||||
]
|
|
||||||
|
|
||||||
data = []
|
|
||||||
for audio_clip in tqdm.tqdm(
|
|
||||||
input_files, desc=f"Processing {len(input_files)} audio file(s)"
|
|
||||||
):
|
|
||||||
decoder = decoders.AudioDecoder(audio_clip)
|
|
||||||
|
|
||||||
decoded_samples = decoder.get_all_samples()
|
|
||||||
audio = decoded_samples.data
|
|
||||||
original_sample_rate = decoded_samples.sample_rate
|
|
||||||
|
|
||||||
audio = AudioUtils.stereo_tensor_to_mono(audio)
|
|
||||||
|
|
||||||
# Generate low-quality audio with random downsampling
|
|
||||||
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
|
||||||
resample_transform_low = torchaudio.transforms.Resample(
|
|
||||||
original_sample_rate, mangled_sample_rate
|
|
||||||
)
|
|
||||||
resample_transform_high = torchaudio.transforms.Resample(
|
|
||||||
mangled_sample_rate, original_sample_rate
|
|
||||||
)
|
|
||||||
|
|
||||||
low_audio = resample_transform_low(audio)
|
|
||||||
low_audio = resample_transform_high(low_audio)
|
|
||||||
|
|
||||||
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length)
|
|
||||||
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(
|
|
||||||
splitted_high_quality_audio[-1], clip_length
|
|
||||||
)
|
|
||||||
|
|
||||||
splitted_low_quality_audio = AudioUtils.split_audio(low_audio, clip_length)
|
|
||||||
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(
|
|
||||||
splitted_low_quality_audio[-1], clip_length
|
|
||||||
)
|
|
||||||
|
|
||||||
for high_quality_sample, low_quality_sample in zip(
|
|
||||||
splitted_high_quality_audio, splitted_low_quality_audio
|
|
||||||
):
|
|
||||||
data.append(
|
|
||||||
(
|
|
||||||
(high_quality_sample, low_quality_sample),
|
|
||||||
(original_sample_rate, mangled_sample_rate),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
self.audio_data = data
|
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.audio_data)
|
return len(self.input_files)
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
return self.audio_data[idx]
|
# Load high-quality audio
|
||||||
|
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
|
||||||
|
|
||||||
|
# Generate low-quality audio with random downsampling
|
||||||
|
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
||||||
|
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
|
||||||
|
low_quality_audio = resample_transform_low(high_quality_audio)
|
||||||
|
|
||||||
|
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
||||||
|
low_quality_audio = resample_transform_high(low_quality_audio)
|
||||||
|
|
||||||
|
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
|
||||||
|
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio)
|
||||||
|
|
||||||
|
# Pad or truncate high-quality audio
|
||||||
|
if high_quality_audio.shape[1] < self.MAX_LENGTH:
|
||||||
|
padding = self.MAX_LENGTH - high_quality_audio.shape[1]
|
||||||
|
high_quality_audio = F.pad(high_quality_audio, (0, padding))
|
||||||
|
elif high_quality_audio.shape[1] > self.MAX_LENGTH:
|
||||||
|
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH]
|
||||||
|
|
||||||
|
# Pad or truncate low-quality audio
|
||||||
|
if low_quality_audio.shape[1] < self.MAX_LENGTH:
|
||||||
|
padding = self.MAX_LENGTH - low_quality_audio.shape[1]
|
||||||
|
low_quality_audio = F.pad(low_quality_audio, (0, padding))
|
||||||
|
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
|
||||||
|
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
|
||||||
|
|
||||||
|
high_quality_audio = high_quality_audio.to(self.device)
|
||||||
|
low_quality_audio = low_quality_audio.to(self.device)
|
||||||
|
|
||||||
|
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)
|
||||||
|
@@ -1,16 +1,8 @@
|
|||||||
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.utils as utils
|
import torch.nn.utils as utils
|
||||||
|
|
||||||
|
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True):
|
||||||
def discriminator_block(
|
|
||||||
in_channels,
|
|
||||||
out_channels,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
dilation=1,
|
|
||||||
spectral_norm=True,
|
|
||||||
use_instance_norm=True,
|
|
||||||
):
|
|
||||||
padding = (kernel_size // 2) * dilation
|
padding = (kernel_size // 2) * dilation
|
||||||
conv_layer = nn.Conv1d(
|
conv_layer = nn.Conv1d(
|
||||||
in_channels,
|
in_channels,
|
||||||
@@ -18,7 +10,7 @@ def discriminator_block(
|
|||||||
kernel_size=kernel_size,
|
kernel_size=kernel_size,
|
||||||
stride=stride,
|
stride=stride,
|
||||||
dilation=dilation,
|
dilation=dilation,
|
||||||
padding=padding,
|
padding=padding
|
||||||
)
|
)
|
||||||
|
|
||||||
if spectral_norm:
|
if spectral_norm:
|
||||||
@@ -32,7 +24,6 @@ def discriminator_block(
|
|||||||
|
|
||||||
return nn.Sequential(*layers)
|
return nn.Sequential(*layers)
|
||||||
|
|
||||||
|
|
||||||
class AttentionBlock(nn.Module):
|
class AttentionBlock(nn.Module):
|
||||||
def __init__(self, channels):
|
def __init__(self, channels):
|
||||||
super(AttentionBlock, self).__init__()
|
super(AttentionBlock, self).__init__()
|
||||||
@@ -40,86 +31,27 @@ class AttentionBlock(nn.Module):
|
|||||||
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||||
nn.ReLU(inplace=True),
|
nn.ReLU(inplace=True),
|
||||||
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||||
nn.Sigmoid(),
|
nn.Sigmoid()
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
attention_weights = self.attention(x)
|
attention_weights = self.attention(x)
|
||||||
return x * attention_weights
|
return x * attention_weights
|
||||||
|
|
||||||
|
|
||||||
class SISUDiscriminator(nn.Module):
|
class SISUDiscriminator(nn.Module):
|
||||||
def __init__(self, base_channels=16):
|
def __init__(self, base_channels=16):
|
||||||
super(SISUDiscriminator, self).__init__()
|
super(SISUDiscriminator, self).__init__()
|
||||||
layers = base_channels
|
layers = base_channels
|
||||||
self.model = nn.Sequential(
|
self.model = nn.Sequential(
|
||||||
discriminator_block(
|
discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False),
|
||||||
1,
|
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
|
||||||
layers,
|
discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True),
|
||||||
kernel_size=7,
|
|
||||||
stride=1,
|
|
||||||
spectral_norm=True,
|
|
||||||
use_instance_norm=False,
|
|
||||||
),
|
|
||||||
discriminator_block(
|
|
||||||
layers,
|
|
||||||
layers * 2,
|
|
||||||
kernel_size=5,
|
|
||||||
stride=2,
|
|
||||||
spectral_norm=True,
|
|
||||||
use_instance_norm=True,
|
|
||||||
),
|
|
||||||
discriminator_block(
|
|
||||||
layers * 2,
|
|
||||||
layers * 4,
|
|
||||||
kernel_size=5,
|
|
||||||
stride=1,
|
|
||||||
dilation=2,
|
|
||||||
spectral_norm=True,
|
|
||||||
use_instance_norm=True,
|
|
||||||
),
|
|
||||||
AttentionBlock(layers * 4),
|
AttentionBlock(layers * 4),
|
||||||
discriminator_block(
|
discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True),
|
||||||
layers * 4,
|
discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
|
||||||
layers * 8,
|
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
|
||||||
kernel_size=5,
|
discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
|
||||||
stride=1,
|
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False)
|
||||||
dilation=4,
|
|
||||||
spectral_norm=True,
|
|
||||||
use_instance_norm=True,
|
|
||||||
),
|
|
||||||
discriminator_block(
|
|
||||||
layers * 8,
|
|
||||||
layers * 4,
|
|
||||||
kernel_size=5,
|
|
||||||
stride=2,
|
|
||||||
spectral_norm=True,
|
|
||||||
use_instance_norm=True,
|
|
||||||
),
|
|
||||||
discriminator_block(
|
|
||||||
layers * 4,
|
|
||||||
layers * 2,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
spectral_norm=True,
|
|
||||||
use_instance_norm=True,
|
|
||||||
),
|
|
||||||
discriminator_block(
|
|
||||||
layers * 2,
|
|
||||||
layers,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
spectral_norm=True,
|
|
||||||
use_instance_norm=True,
|
|
||||||
),
|
|
||||||
discriminator_block(
|
|
||||||
layers,
|
|
||||||
1,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
spectral_norm=False,
|
|
||||||
use_instance_norm=False,
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
|
|
||||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||||
|
@@ -2,22 +2,20 @@ import json
|
|||||||
|
|
||||||
filepath = "my_data.json"
|
filepath = "my_data.json"
|
||||||
|
|
||||||
def write_data(filepath, data, debug=False):
|
def write_data(filepath, data):
|
||||||
try:
|
try:
|
||||||
with open(filepath, 'w') as f:
|
with open(filepath, 'w') as f:
|
||||||
json.dump(data, f, indent=4) # Use indent for pretty formatting
|
json.dump(data, f, indent=4) # Use indent for pretty formatting
|
||||||
if debug:
|
print(f"Data written to '{filepath}'")
|
||||||
print(f"Data written to '{filepath}'")
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error writing to file: {e}")
|
print(f"Error writing to file: {e}")
|
||||||
|
|
||||||
|
|
||||||
def read_data(filepath, debug=False):
|
def read_data(filepath):
|
||||||
try:
|
try:
|
||||||
with open(filepath, 'r') as f:
|
with open(filepath, 'r') as f:
|
||||||
data = json.load(f)
|
data = json.load(f)
|
||||||
if debug:
|
print(f"Data read from '{filepath}'")
|
||||||
print(f"Data read from '{filepath}'")
|
|
||||||
return data
|
return data
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
print(f"File not found: {filepath}")
|
print(f"File not found: {filepath}")
|
||||||
|
12
generator.py
12
generator.py
@@ -1,6 +1,6 @@
|
|||||||
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
||||||
return nn.Sequential(
|
return nn.Sequential(
|
||||||
nn.Conv1d(
|
nn.Conv1d(
|
||||||
@@ -8,32 +8,29 @@ def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
|||||||
out_channels,
|
out_channels,
|
||||||
kernel_size=kernel_size,
|
kernel_size=kernel_size,
|
||||||
dilation=dilation,
|
dilation=dilation,
|
||||||
padding=(kernel_size // 2) * dilation,
|
padding=(kernel_size // 2) * dilation
|
||||||
),
|
),
|
||||||
nn.InstanceNorm1d(out_channels),
|
nn.InstanceNorm1d(out_channels),
|
||||||
nn.PReLU(),
|
nn.PReLU()
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class AttentionBlock(nn.Module):
|
class AttentionBlock(nn.Module):
|
||||||
"""
|
"""
|
||||||
Simple Channel Attention Block. Learns to weight channels based on their importance.
|
Simple Channel Attention Block. Learns to weight channels based on their importance.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, channels):
|
def __init__(self, channels):
|
||||||
super(AttentionBlock, self).__init__()
|
super(AttentionBlock, self).__init__()
|
||||||
self.attention = nn.Sequential(
|
self.attention = nn.Sequential(
|
||||||
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||||
nn.ReLU(inplace=True),
|
nn.ReLU(inplace=True),
|
||||||
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||||
nn.Sigmoid(),
|
nn.Sigmoid()
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
attention_weights = self.attention(x)
|
attention_weights = self.attention(x)
|
||||||
return x * attention_weights
|
return x * attention_weights
|
||||||
|
|
||||||
|
|
||||||
class ResidualInResidualBlock(nn.Module):
|
class ResidualInResidualBlock(nn.Module):
|
||||||
def __init__(self, channels, num_convs=3):
|
def __init__(self, channels, num_convs=3):
|
||||||
super(ResidualInResidualBlock, self).__init__()
|
super(ResidualInResidualBlock, self).__init__()
|
||||||
@@ -50,7 +47,6 @@ class ResidualInResidualBlock(nn.Module):
|
|||||||
x = self.attention(x)
|
x = self.attention(x)
|
||||||
return x + residual
|
return x + residual
|
||||||
|
|
||||||
|
|
||||||
class SISUGenerator(nn.Module):
|
class SISUGenerator(nn.Module):
|
||||||
def __init__(self, channels=16, num_rirb=4, alpha=1.0):
|
def __init__(self, channels=16, num_rirb=4, alpha=1.0):
|
||||||
super(SISUGenerator, self).__init__()
|
super(SISUGenerator, self).__init__()
|
||||||
|
391
training.py
391
training.py
@@ -1,273 +1,194 @@
|
|||||||
import argparse
|
|
||||||
import os
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
import torchaudio.transforms as T
|
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torchaudio
|
||||||
import tqdm
|
import tqdm
|
||||||
from torch.amp import GradScaler, autocast
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import math
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
from torch.utils.data import random_split
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
import training_utils
|
import AudioUtils
|
||||||
from data import AudioDataset
|
from data import AudioDataset
|
||||||
from discriminator import SISUDiscriminator
|
|
||||||
from generator import SISUGenerator
|
from generator import SISUGenerator
|
||||||
from training_utils import discriminator_train, generator_train
|
from discriminator import SISUDiscriminator
|
||||||
|
|
||||||
|
from training_utils import discriminator_train, generator_train
|
||||||
|
import file_utils as Data
|
||||||
|
|
||||||
|
import torchaudio.transforms as T
|
||||||
|
|
||||||
|
# Init script argument parser
|
||||||
|
parser = argparse.ArgumentParser(description="Training script")
|
||||||
|
parser.add_argument("--generator", type=str, default=None,
|
||||||
|
help="Path to the generator model file")
|
||||||
|
parser.add_argument("--discriminator", type=str, default=None,
|
||||||
|
help="Path to the discriminator model file")
|
||||||
|
parser.add_argument("--device", type=str, default="cpu", help="Select device")
|
||||||
|
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
|
||||||
|
parser.add_argument("--debug", action="store_true", help="Print debug logs")
|
||||||
|
parser.add_argument("--continue_training", action="store_true", help="Continue training using temp_generator and temp_discriminator models")
|
||||||
|
|
||||||
# ---------------------------
|
|
||||||
# Argument parsing
|
|
||||||
# ---------------------------
|
|
||||||
parser = argparse.ArgumentParser(description="Training script (safer defaults)")
|
|
||||||
parser.add_argument("--resume", action="store_true", help="Resume training")
|
|
||||||
parser.add_argument(
|
|
||||||
"--device", type=str, default="cuda", help="Device (cuda, cpu, mps)"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--epochs", type=int, default=5000, help="Number of training epochs"
|
|
||||||
)
|
|
||||||
parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
|
|
||||||
parser.add_argument("--num_workers", type=int, default=2, help="DataLoader num_workers")
|
|
||||||
parser.add_argument("--debug", action="store_true", help="Print debug logs")
|
|
||||||
parser.add_argument(
|
|
||||||
"--no_pin_memory", action="store_true", help="Disable pin_memory even on CUDA"
|
|
||||||
)
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# ---------------------------
|
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
|
||||||
# Device setup
|
|
||||||
# ---------------------------
|
|
||||||
# Use requested device only if available
|
|
||||||
device = torch.device(
|
|
||||||
args.device if (args.device != "cuda" or torch.cuda.is_available()) else "cpu"
|
|
||||||
)
|
|
||||||
print(f"Using device: {device}")
|
print(f"Using device: {device}")
|
||||||
# sensible performance flags
|
|
||||||
if device.type == "cuda":
|
|
||||||
torch.backends.cudnn.benchmark = True
|
|
||||||
# optional: torch.set_float32_matmul_precision("high")
|
|
||||||
debug = args.debug
|
|
||||||
|
|
||||||
# ---------------------------
|
# Parameters
|
||||||
# Audio transforms
|
|
||||||
# ---------------------------
|
|
||||||
sample_rate = 44100
|
sample_rate = 44100
|
||||||
n_fft = 1024
|
n_fft = 2048
|
||||||
|
hop_length = 256
|
||||||
win_length = n_fft
|
win_length = n_fft
|
||||||
hop_length = n_fft // 4
|
n_mels = 128
|
||||||
n_mels = 96
|
n_mfcc = 20 # If using MFCC
|
||||||
# n_mfcc = 13
|
|
||||||
|
|
||||||
# mfcc_transform = T.MFCC(
|
mfcc_transform = T.MFCC(
|
||||||
# sample_rate=sample_rate,
|
sample_rate,
|
||||||
# n_mfcc=n_mfcc,
|
n_mfcc,
|
||||||
# melkwargs=dict(
|
melkwargs = {'n_fft': n_fft, 'hop_length': hop_length}
|
||||||
# n_fft=n_fft,
|
).to(device)
|
||||||
# hop_length=hop_length,
|
|
||||||
# win_length=win_length,
|
|
||||||
# n_mels=n_mels,
|
|
||||||
# power=1.0,
|
|
||||||
# ),
|
|
||||||
# ).to(device)
|
|
||||||
|
|
||||||
mel_transform = T.MelSpectrogram(
|
mel_transform = T.MelSpectrogram(
|
||||||
sample_rate=sample_rate,
|
sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length,
|
||||||
n_fft=n_fft,
|
win_length=win_length, n_mels=n_mels, power=1.0 # Magnitude Mel
|
||||||
hop_length=hop_length,
|
|
||||||
win_length=win_length,
|
|
||||||
n_mels=n_mels,
|
|
||||||
power=1.0,
|
|
||||||
).to(device)
|
).to(device)
|
||||||
|
|
||||||
stft_transform = T.Spectrogram(
|
stft_transform = T.Spectrogram(
|
||||||
n_fft=n_fft, win_length=win_length, hop_length=hop_length
|
n_fft=n_fft, win_length=win_length, hop_length=hop_length
|
||||||
).to(device)
|
).to(device)
|
||||||
|
|
||||||
# training_utils.init(mel_transform, stft_transform, mfcc_transform)
|
debug = args.debug
|
||||||
training_utils.init(mel_transform, stft_transform)
|
|
||||||
|
|
||||||
# ---------------------------
|
# Initialize dataset and dataloader
|
||||||
# Dataset / DataLoader
|
dataset_dir = './dataset/good'
|
||||||
# ---------------------------
|
dataset = AudioDataset(dataset_dir, device)
|
||||||
dataset_dir = "./dataset/good"
|
models_dir = "models"
|
||||||
dataset = AudioDataset(dataset_dir)
|
os.makedirs(models_dir, exist_ok=True)
|
||||||
|
audio_output_dir = "output"
|
||||||
|
os.makedirs(audio_output_dir, exist_ok=True)
|
||||||
|
|
||||||
train_loader = DataLoader(
|
# ========= SINGLE =========
|
||||||
dataset,
|
|
||||||
batch_size=args.batch_size,
|
|
||||||
shuffle=True,
|
|
||||||
num_workers=args.num_workers,
|
|
||||||
pin_memory=True,
|
|
||||||
persistent_workers=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# ---------------------------
|
train_data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
|
||||||
# Models
|
|
||||||
# ---------------------------
|
|
||||||
generator = SISUGenerator().to(device)
|
|
||||||
discriminator = SISUDiscriminator().to(device)
|
|
||||||
|
|
||||||
generator = torch.compile(generator)
|
|
||||||
discriminator = torch.compile(discriminator)
|
|
||||||
|
|
||||||
# ---------------------------
|
# ========= MODELS =========
|
||||||
# Losses / Optimizers / Scalers
|
|
||||||
# ---------------------------
|
generator = SISUGenerator()
|
||||||
|
discriminator = SISUDiscriminator()
|
||||||
|
|
||||||
|
epoch: int = args.epoch
|
||||||
|
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
|
||||||
|
|
||||||
|
if args.continue_training:
|
||||||
|
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
|
||||||
|
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
|
||||||
|
epoch = epoch_from_file["epoch"] + 1
|
||||||
|
else:
|
||||||
|
if args.generator is not None:
|
||||||
|
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
|
||||||
|
if args.discriminator is not None:
|
||||||
|
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
|
||||||
|
|
||||||
|
generator = generator.to(device)
|
||||||
|
discriminator = discriminator.to(device)
|
||||||
|
|
||||||
|
# Loss
|
||||||
criterion_g = nn.BCEWithLogitsLoss()
|
criterion_g = nn.BCEWithLogitsLoss()
|
||||||
criterion_d = nn.BCEWithLogitsLoss()
|
criterion_d = nn.BCEWithLogitsLoss()
|
||||||
|
|
||||||
optimizer_g = optim.AdamW(
|
# Optimizers
|
||||||
generator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
|
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||||
)
|
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||||
optimizer_d = optim.AdamW(
|
|
||||||
discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
|
|
||||||
)
|
|
||||||
|
|
||||||
# Use modern GradScaler signature; choose device_type based on runtime device.
|
# Scheduler
|
||||||
scaler = GradScaler(device=device)
|
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
|
||||||
|
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
||||||
|
|
||||||
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
def start_training():
|
||||||
optimizer_g, mode="min", factor=0.5, patience=5
|
generator_epochs = 5000
|
||||||
)
|
for generator_epoch in range(generator_epochs):
|
||||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
low_quality_audio = (torch.empty((1)), 1)
|
||||||
optimizer_d, mode="min", factor=0.5, patience=5
|
high_quality_audio = (torch.empty((1)), 1)
|
||||||
)
|
ai_enhanced_audio = (torch.empty((1)), 1)
|
||||||
|
|
||||||
# ---------------------------
|
times_correct = 0
|
||||||
# Checkpoint helpers
|
|
||||||
# ---------------------------
|
# ========= TRAINING =========
|
||||||
models_dir = "./models"
|
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
|
||||||
os.makedirs(models_dir, exist_ok=True)
|
# for high_quality_clip, low_quality_clip in train_data_loader:
|
||||||
|
high_quality_sample = (high_quality_clip[0], high_quality_clip[1])
|
||||||
|
low_quality_sample = (low_quality_clip[0], low_quality_clip[1])
|
||||||
|
|
||||||
|
# ========= LABELS =========
|
||||||
|
batch_size = high_quality_clip[0].size(0)
|
||||||
|
real_labels = torch.ones(batch_size, 1).to(device)
|
||||||
|
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||||
|
|
||||||
|
# ========= DISCRIMINATOR =========
|
||||||
|
discriminator.train()
|
||||||
|
d_loss = discriminator_train(
|
||||||
|
high_quality_sample,
|
||||||
|
low_quality_sample,
|
||||||
|
real_labels,
|
||||||
|
fake_labels,
|
||||||
|
discriminator,
|
||||||
|
generator,
|
||||||
|
criterion_d,
|
||||||
|
optimizer_d
|
||||||
|
)
|
||||||
|
|
||||||
|
# ========= GENERATOR =========
|
||||||
|
generator.train()
|
||||||
|
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
|
||||||
|
low_quality_sample,
|
||||||
|
high_quality_sample,
|
||||||
|
real_labels,
|
||||||
|
generator,
|
||||||
|
discriminator,
|
||||||
|
criterion_d,
|
||||||
|
optimizer_g,
|
||||||
|
device,
|
||||||
|
mel_transform,
|
||||||
|
stft_transform,
|
||||||
|
mfcc_transform
|
||||||
|
)
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
|
||||||
|
scheduler_d.step(d_loss.detach())
|
||||||
|
scheduler_g.step(adversarial_loss.detach())
|
||||||
|
|
||||||
|
# ========= SAVE LATEST AUDIO =========
|
||||||
|
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0])
|
||||||
|
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0])
|
||||||
|
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0])
|
||||||
|
|
||||||
|
new_epoch = generator_epoch+epoch
|
||||||
|
|
||||||
|
if generator_epoch % 25 == 0:
|
||||||
|
print(f"Saved epoch {new_epoch}!")
|
||||||
|
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
||||||
|
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
|
||||||
|
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
|
||||||
|
|
||||||
|
#if debug:
|
||||||
|
# print(generator.state_dict().keys())
|
||||||
|
# print(discriminator.state_dict().keys())
|
||||||
|
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
|
||||||
|
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
|
||||||
|
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
|
||||||
|
|
||||||
|
|
||||||
def save_ckpt(path, epoch):
|
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
|
||||||
torch.save(
|
torch.save(generator, "models/epoch-5000-generator.pt")
|
||||||
{
|
print("Training complete!")
|
||||||
"epoch": epoch,
|
|
||||||
"G": generator.state_dict(),
|
|
||||||
"D": discriminator.state_dict(),
|
|
||||||
"optG": optimizer_g.state_dict(),
|
|
||||||
"optD": optimizer_d.state_dict(),
|
|
||||||
"scaler": scaler.state_dict(),
|
|
||||||
"schedG": scheduler_g.state_dict(),
|
|
||||||
"schedD": scheduler_d.state_dict(),
|
|
||||||
},
|
|
||||||
path,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
start_training()
|
||||||
start_epoch = 0
|
|
||||||
if args.resume:
|
|
||||||
ckpt = torch.load(os.path.join(models_dir, "last.pt"), map_location=device)
|
|
||||||
generator.load_state_dict(ckpt["G"])
|
|
||||||
discriminator.load_state_dict(ckpt["D"])
|
|
||||||
optimizer_g.load_state_dict(ckpt["optG"])
|
|
||||||
optimizer_d.load_state_dict(ckpt["optD"])
|
|
||||||
scaler.load_state_dict(ckpt["scaler"])
|
|
||||||
scheduler_g.load_state_dict(ckpt["schedG"])
|
|
||||||
scheduler_d.load_state_dict(ckpt["schedD"])
|
|
||||||
start_epoch = ckpt.get("epoch", 1)
|
|
||||||
|
|
||||||
# ---------------------------
|
|
||||||
# Training loop (safer)
|
|
||||||
# ---------------------------
|
|
||||||
|
|
||||||
if not train_loader or not train_loader.batch_size:
|
|
||||||
print("There is no data to train with! Exiting...")
|
|
||||||
exit()
|
|
||||||
|
|
||||||
max_batch = max(1, train_loader.batch_size)
|
|
||||||
real_buf = torch.full((max_batch, 1), 0.9, device=device) # label smoothing
|
|
||||||
fake_buf = torch.zeros(max_batch, 1, device=device)
|
|
||||||
|
|
||||||
try:
|
|
||||||
for epoch in range(start_epoch, args.epochs):
|
|
||||||
generator.train()
|
|
||||||
discriminator.train()
|
|
||||||
|
|
||||||
running_d, running_g, steps = 0.0, 0.0, 0
|
|
||||||
|
|
||||||
for i, (
|
|
||||||
(high_quality, low_quality),
|
|
||||||
(high_sample_rate, low_sample_rate),
|
|
||||||
) in enumerate(tqdm.tqdm(train_loader, desc=f"Epoch {epoch}")):
|
|
||||||
batch_size = high_quality.size(0)
|
|
||||||
|
|
||||||
high_quality = high_quality.to(device, non_blocking=True)
|
|
||||||
low_quality = low_quality.to(device, non_blocking=True)
|
|
||||||
|
|
||||||
real_labels = real_buf[:batch_size]
|
|
||||||
fake_labels = fake_buf[:batch_size]
|
|
||||||
|
|
||||||
# --- Discriminator ---
|
|
||||||
optimizer_d.zero_grad(set_to_none=True)
|
|
||||||
with autocast(device_type=device.type):
|
|
||||||
d_loss = discriminator_train(
|
|
||||||
high_quality,
|
|
||||||
low_quality,
|
|
||||||
real_labels,
|
|
||||||
fake_labels,
|
|
||||||
discriminator,
|
|
||||||
generator,
|
|
||||||
criterion_d,
|
|
||||||
)
|
|
||||||
|
|
||||||
scaler.scale(d_loss).backward()
|
|
||||||
scaler.unscale_(optimizer_d)
|
|
||||||
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), 1.0)
|
|
||||||
scaler.step(optimizer_d)
|
|
||||||
|
|
||||||
# --- Generator ---
|
|
||||||
optimizer_g.zero_grad(set_to_none=True)
|
|
||||||
with autocast(device_type=device.type):
|
|
||||||
g_out, g_total, g_adv = generator_train(
|
|
||||||
low_quality,
|
|
||||||
high_quality,
|
|
||||||
real_labels,
|
|
||||||
generator,
|
|
||||||
discriminator,
|
|
||||||
criterion_d,
|
|
||||||
)
|
|
||||||
|
|
||||||
scaler.scale(g_total).backward()
|
|
||||||
scaler.unscale_(optimizer_g)
|
|
||||||
torch.nn.utils.clip_grad_norm_(generator.parameters(), 1.0)
|
|
||||||
scaler.step(optimizer_g)
|
|
||||||
|
|
||||||
scaler.update()
|
|
||||||
|
|
||||||
running_d += float(d_loss.detach().cpu().item())
|
|
||||||
running_g += float(g_total.detach().cpu().item())
|
|
||||||
steps += 1
|
|
||||||
|
|
||||||
# epoch averages & schedulers
|
|
||||||
if steps == 0:
|
|
||||||
print("No steps in epoch (empty dataloader?). Exiting.")
|
|
||||||
break
|
|
||||||
|
|
||||||
mean_d = running_d / steps
|
|
||||||
mean_g = running_g / steps
|
|
||||||
|
|
||||||
scheduler_d.step(mean_d)
|
|
||||||
scheduler_g.step(mean_g)
|
|
||||||
|
|
||||||
save_ckpt(os.path.join(models_dir, "last.pt"), epoch)
|
|
||||||
print(f"Epoch {epoch} done | D {mean_d:.4f} | G {mean_g:.4f}")
|
|
||||||
|
|
||||||
except Exception:
|
|
||||||
try:
|
|
||||||
save_ckpt(os.path.join(models_dir, "crash_last.pt"), epoch)
|
|
||||||
print(f"Saved crash checkpoint for epoch {epoch}")
|
|
||||||
except Exception as e:
|
|
||||||
print("Failed saving crash checkpoint:", e)
|
|
||||||
raise
|
|
||||||
|
|
||||||
try:
|
|
||||||
torch.save(generator.state_dict(), os.path.join(models_dir, "final_generator.pt"))
|
|
||||||
torch.save(
|
|
||||||
discriminator.state_dict(), os.path.join(models_dir, "final_discriminator.pt")
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
print("Failed to save final states:", e)
|
|
||||||
|
|
||||||
print("Training finished.")
|
|
||||||
|
@@ -1,87 +1,90 @@
|
|||||||
import torch
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
|
||||||
|
import torchaudio
|
||||||
import torchaudio.transforms as T
|
import torchaudio.transforms as T
|
||||||
|
|
||||||
from utils.MultiResolutionSTFTLoss import MultiResolutionSTFTLoss
|
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
|
||||||
|
mfccs_true = mfcc_transform(y_true)
|
||||||
|
mfccs_pred = mfcc_transform(y_pred)
|
||||||
|
|
||||||
mel_transform: T.MelSpectrogram
|
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
|
||||||
stft_transform: T.Spectrogram
|
mfccs_true = mfccs_true[:, :, :min_len]
|
||||||
# mfcc_transform: T.MFCC
|
mfccs_pred = mfccs_pred[:, :, :min_len]
|
||||||
|
|
||||||
|
loss = torch.mean((mfccs_true - mfccs_pred)**2)
|
||||||
|
return loss
|
||||||
|
|
||||||
# def init(mel_trans: T.MelSpectrogram, stft_trans: T.Spectrogram, mfcc_trans: T.MFCC):
|
def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
|
||||||
# """Initializes the global transform variables for the module."""
|
mel_spec_true = mel_transform(y_true)
|
||||||
# global mel_transform, stft_transform, mfcc_transform
|
mel_spec_pred = mel_transform(y_pred)
|
||||||
# mel_transform = mel_trans
|
|
||||||
# stft_transform = stft_trans
|
|
||||||
# mfcc_transform = mfcc_trans
|
|
||||||
|
|
||||||
|
# Ensure same time dimension length (due to potential framing differences)
|
||||||
|
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
|
||||||
|
mel_spec_true = mel_spec_true[..., :min_len]
|
||||||
|
mel_spec_pred = mel_spec_pred[..., :min_len]
|
||||||
|
|
||||||
def init(mel_trans: T.MelSpectrogram, stft_trans: T.Spectrogram):
|
# L1 Loss (Mean Absolute Error)
|
||||||
"""Initializes the global transform variables for the module."""
|
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
|
||||||
global mel_transform, stft_transform
|
return loss
|
||||||
mel_transform = mel_trans
|
|
||||||
stft_transform = stft_trans
|
|
||||||
|
|
||||||
|
def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
|
||||||
|
mel_spec_true = mel_transform(y_true)
|
||||||
|
mel_spec_pred = mel_transform(y_pred)
|
||||||
|
|
||||||
# def mfcc_loss(y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
|
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
|
||||||
# """Computes the Mean Squared Error (MSE) loss on MFCCs."""
|
mel_spec_true = mel_spec_true[..., :min_len]
|
||||||
# mfccs_true = mfcc_transform(y_true)
|
mel_spec_pred = mel_spec_pred[..., :min_len]
|
||||||
# mfccs_pred = mfcc_transform(y_pred)
|
|
||||||
# return F.mse_loss(mfccs_pred, mfccs_true)
|
|
||||||
|
|
||||||
|
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
|
||||||
|
return loss
|
||||||
|
|
||||||
# def mel_spectrogram_loss(
|
def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
|
||||||
# y_true: torch.Tensor, y_pred: torch.Tensor, loss_type: str = "l1"
|
stft_mag_true = stft_transform(y_true)
|
||||||
# ) -> torch.Tensor:
|
stft_mag_pred = stft_transform(y_pred)
|
||||||
# """Calculates L1 or L2 loss on the Mel Spectrogram."""
|
|
||||||
# mel_spec_true = mel_transform(y_true)
|
|
||||||
# mel_spec_pred = mel_transform(y_pred)
|
|
||||||
# if loss_type == "l1":
|
|
||||||
# return F.l1_loss(mel_spec_pred, mel_spec_true)
|
|
||||||
# elif loss_type == "l2":
|
|
||||||
# return F.mse_loss(mel_spec_pred, mel_spec_true)
|
|
||||||
# else:
|
|
||||||
# raise ValueError("loss_type must be 'l1' or 'l2'")
|
|
||||||
|
|
||||||
|
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
|
||||||
|
stft_mag_true = stft_mag_true[..., :min_len]
|
||||||
|
stft_mag_pred = stft_mag_pred[..., :min_len]
|
||||||
|
|
||||||
# def log_stft_magnitude_loss(
|
loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
|
||||||
# y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7
|
return loss
|
||||||
# ) -> torch.Tensor:
|
|
||||||
# """Calculates L1 loss on the log STFT magnitude."""
|
|
||||||
# stft_mag_true = stft_transform(y_true)
|
|
||||||
# stft_mag_pred = stft_transform(y_pred)
|
|
||||||
# return F.l1_loss(torch.log(stft_mag_pred + eps), torch.log(stft_mag_true + eps))
|
|
||||||
|
|
||||||
|
def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
|
||||||
|
stft_mag_true = stft_transform(y_true)
|
||||||
|
stft_mag_pred = stft_transform(y_pred)
|
||||||
|
|
||||||
stft_loss_fn = MultiResolutionSTFTLoss(
|
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
|
||||||
fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240]
|
stft_mag_true = stft_mag_true[..., :min_len]
|
||||||
)
|
stft_mag_pred = stft_mag_pred[..., :min_len]
|
||||||
|
|
||||||
|
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
|
||||||
|
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
|
||||||
|
|
||||||
def discriminator_train(
|
loss = torch.mean(norm_diff / (norm_true + eps))
|
||||||
high_quality,
|
return loss
|
||||||
low_quality,
|
|
||||||
real_labels,
|
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
|
||||||
fake_labels,
|
optimizer.zero_grad()
|
||||||
discriminator,
|
|
||||||
generator,
|
# Forward pass for real samples
|
||||||
criterion,
|
discriminator_decision_from_real = discriminator(high_quality[0])
|
||||||
):
|
|
||||||
discriminator_decision_from_real = discriminator(high_quality)
|
|
||||||
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
generator_output = generator(low_quality)
|
generator_output = generator(low_quality[0])
|
||||||
discriminator_decision_from_fake = discriminator(generator_output)
|
discriminator_decision_from_fake = discriminator(generator_output)
|
||||||
d_loss_fake = criterion(
|
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
|
||||||
discriminator_decision_from_fake,
|
|
||||||
fake_labels.expand_as(discriminator_decision_from_fake),
|
|
||||||
)
|
|
||||||
|
|
||||||
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
||||||
|
|
||||||
return d_loss
|
d_loss.backward()
|
||||||
|
# Optional: Gradient Clipping (can be helpful)
|
||||||
|
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
return d_loss
|
||||||
|
|
||||||
def generator_train(
|
def generator_train(
|
||||||
low_quality,
|
low_quality,
|
||||||
@@ -90,65 +93,52 @@ def generator_train(
|
|||||||
generator,
|
generator,
|
||||||
discriminator,
|
discriminator,
|
||||||
adv_criterion,
|
adv_criterion,
|
||||||
|
g_optimizer,
|
||||||
|
device,
|
||||||
|
mel_transform: T.MelSpectrogram,
|
||||||
|
stft_transform: T.Spectrogram,
|
||||||
|
mfcc_transform: T.MFCC,
|
||||||
lambda_adv: float = 1.0,
|
lambda_adv: float = 1.0,
|
||||||
lambda_feat: float = 10.0,
|
lambda_mel_l1: float = 10.0,
|
||||||
lambda_stft: float = 2.5,
|
lambda_log_stft: float = 1.0,
|
||||||
|
lambda_mfcc: float = 1.0
|
||||||
):
|
):
|
||||||
generator_output = generator(low_quality)
|
g_optimizer.zero_grad()
|
||||||
|
|
||||||
|
generator_output = generator(low_quality[0])
|
||||||
|
|
||||||
discriminator_decision = discriminator(generator_output)
|
discriminator_decision = discriminator(generator_output)
|
||||||
# adversarial_loss = adv_criterion(
|
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
|
||||||
# discriminator_decision, real_labels.expand_as(discriminator_decision)
|
|
||||||
# )
|
|
||||||
adversarial_loss = adv_criterion(discriminator_decision, real_labels)
|
|
||||||
|
|
||||||
combined_loss = lambda_adv * adversarial_loss
|
mel_l1 = 0.0
|
||||||
|
log_stft_l1 = 0.0
|
||||||
|
mfcc_l = 0.0
|
||||||
|
|
||||||
stft_losses = stft_loss_fn(high_quality, generator_output)
|
# Calculate Mel L1 Loss if weight is positive
|
||||||
stft_loss = stft_losses["total"]
|
if lambda_mel_l1 > 0:
|
||||||
|
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output)
|
||||||
|
|
||||||
combined_loss = (lambda_adv * adversarial_loss) + (lambda_stft * stft_loss)
|
# Calculate Log STFT L1 Loss if weight is positive
|
||||||
|
if lambda_log_stft > 0:
|
||||||
|
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality[0], generator_output)
|
||||||
|
|
||||||
return generator_output, combined_loss, adversarial_loss
|
# Calculate MFCC Loss if weight is positive
|
||||||
|
if lambda_mfcc > 0:
|
||||||
|
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality[0], generator_output)
|
||||||
|
|
||||||
|
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
|
||||||
|
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
|
||||||
|
mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
|
||||||
|
|
||||||
# def generator_train(
|
combined_loss = (lambda_adv * adversarial_loss) + \
|
||||||
# low_quality,
|
(lambda_mel_l1 * mel_l1_tensor) + \
|
||||||
# high_quality,
|
(lambda_log_stft * log_stft_l1_tensor) + \
|
||||||
# real_labels,
|
(lambda_mfcc * mfcc_l_tensor)
|
||||||
# generator,
|
|
||||||
# discriminator,
|
|
||||||
# adv_criterion,
|
|
||||||
# lambda_adv: float = 1.0,
|
|
||||||
# lambda_mel_l1: float = 10.0,
|
|
||||||
# lambda_log_stft: float = 1.0,
|
|
||||||
|
|
||||||
# ):
|
combined_loss.backward()
|
||||||
# generator_output = generator(low_quality)
|
# Optional: Gradient Clipping
|
||||||
|
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
|
||||||
|
g_optimizer.step()
|
||||||
|
|
||||||
# discriminator_decision = discriminator(generator_output)
|
# 6. Return values for logging
|
||||||
# adversarial_loss = adv_criterion(
|
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor
|
||||||
# discriminator_decision, real_labels.expand_as(discriminator_decision)
|
|
||||||
# )
|
|
||||||
|
|
||||||
# combined_loss = lambda_adv * adversarial_loss
|
|
||||||
|
|
||||||
# if lambda_mel_l1 > 0:
|
|
||||||
# mel_l1_loss = mel_spectrogram_loss(high_quality, generator_output, "l1")
|
|
||||||
# combined_loss += lambda_mel_l1 * mel_l1_loss
|
|
||||||
# else:
|
|
||||||
# mel_l1_loss = torch.tensor(0.0, device=low_quality.device) # For logging
|
|
||||||
|
|
||||||
# if lambda_log_stft > 0:
|
|
||||||
# log_stft_loss = log_stft_magnitude_loss(high_quality, generator_output)
|
|
||||||
# combined_loss += lambda_log_stft * log_stft_loss
|
|
||||||
# else:
|
|
||||||
# log_stft_loss = torch.tensor(0.0, device=low_quality.device)
|
|
||||||
|
|
||||||
# if lambda_mfcc > 0:
|
|
||||||
# mfcc_loss_val = mfcc_loss(high_quality, generator_output)
|
|
||||||
# combined_loss += lambda_mfcc * mfcc_loss_val
|
|
||||||
# else:
|
|
||||||
# mfcc_loss_val = torch.tensor(0.0, device=low_quality.device)
|
|
||||||
|
|
||||||
# return generator_output, combined_loss, adversarial_loss
|
|
||||||
|
@@ -1,62 +0,0 @@
|
|||||||
from typing import Dict, List
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
import torchaudio.transforms as T
|
|
||||||
|
|
||||||
|
|
||||||
class MultiResolutionSTFTLoss(nn.Module):
|
|
||||||
"""
|
|
||||||
Computes a loss based on multiple STFT resolutions, including both
|
|
||||||
spectral convergence and log STFT magnitude components.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
fft_sizes: List[int] = [1024, 2048, 512],
|
|
||||||
hop_sizes: List[int] = [120, 240, 50],
|
|
||||||
win_lengths: List[int] = [600, 1200, 240],
|
|
||||||
eps: float = 1e-7,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.stft_transforms = nn.ModuleList(
|
|
||||||
[
|
|
||||||
T.Spectrogram(
|
|
||||||
n_fft=n_fft, win_length=win_len, hop_length=hop_len, power=None
|
|
||||||
)
|
|
||||||
for n_fft, hop_len, win_len in zip(fft_sizes, hop_sizes, win_lengths)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
self.eps = eps
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self, y_true: torch.Tensor, y_pred: torch.Tensor
|
|
||||||
) -> Dict[str, torch.Tensor]:
|
|
||||||
sc_loss = 0.0 # Spectral Convergence Loss
|
|
||||||
mag_loss = 0.0 # Log STFT Magnitude Loss
|
|
||||||
|
|
||||||
for stft in self.stft_transforms:
|
|
||||||
stft.to(y_pred.device) # Ensure transform is on the correct device
|
|
||||||
|
|
||||||
# Get complex STFTs
|
|
||||||
stft_true = stft(y_true)
|
|
||||||
stft_pred = stft(y_pred)
|
|
||||||
|
|
||||||
# Get magnitudes
|
|
||||||
stft_mag_true = torch.abs(stft_true)
|
|
||||||
stft_mag_pred = torch.abs(stft_pred)
|
|
||||||
|
|
||||||
# --- Spectral Convergence Loss ---
|
|
||||||
# || |S_true| - |S_pred| ||_F / || |S_true| ||_F
|
|
||||||
norm_true = torch.linalg.norm(stft_mag_true, dim=(-2, -1))
|
|
||||||
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, dim=(-2, -1))
|
|
||||||
sc_loss += torch.mean(norm_diff / (norm_true + self.eps))
|
|
||||||
|
|
||||||
# --- Log STFT Magnitude Loss ---
|
|
||||||
mag_loss += F.l1_loss(
|
|
||||||
torch.log(stft_mag_pred + self.eps), torch.log(stft_mag_true + self.eps)
|
|
||||||
)
|
|
||||||
|
|
||||||
total_loss = sc_loss + mag_loss
|
|
||||||
return {"total": total_loss, "sc": sc_loss, "mag": mag_loss}
|
|
Reference in New Issue
Block a user