Compare commits
13 Commits
architectu
...
main
Author | SHA1 | Date | |
---|---|---|---|
3c18a3e962 | |||
d70c86c257 | |||
c04b072de6 | |||
b6d16e4f11 | |||
|
3936b6c160 | ||
fbcd5803b8 | |||
9394bc6c5a | |||
f928d8c2cf | |||
54338e55a9 | |||
7e1c7e935a | |||
416500f7fc | |||
8332b0df2d | |||
741dcce7b4 |
@ -18,6 +18,7 @@ SISU (Super Ingenious Sound Upscaler) is a project that uses GANs (Generative Ad
|
|||||||
1. **Set Up**:
|
1. **Set Up**:
|
||||||
- Make sure you have Python installed (version 3.8 or higher).
|
- Make sure you have Python installed (version 3.8 or higher).
|
||||||
- Install needed packages: `pip install -r requirements.txt`
|
- Install needed packages: `pip install -r requirements.txt`
|
||||||
|
- Install current version of PyTorch (CUDA/ROCm/What ever your device supports)
|
||||||
|
|
||||||
2. **Prepare Audio Data**:
|
2. **Prepare Audio Data**:
|
||||||
- Put your audio files in the `dataset/good` folder.
|
- Put your audio files in the `dataset/good` folder.
|
||||||
|
30
data.py
30
data.py
@ -4,22 +4,20 @@ import torch
|
|||||||
import torchaudio
|
import torchaudio
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
|
|
||||||
import torchaudio.transforms as T
|
import torchaudio.transforms as T
|
||||||
import AudioUtils
|
import AudioUtils
|
||||||
|
|
||||||
class AudioDataset(Dataset):
|
class AudioDataset(Dataset):
|
||||||
#audio_sample_rates = [8000, 11025, 16000, 22050]
|
|
||||||
audio_sample_rates = [11025]
|
audio_sample_rates = [11025]
|
||||||
|
MAX_LENGTH = 44100 # Define your desired maximum length here
|
||||||
|
|
||||||
def __init__(self, input_dir):
|
def __init__(self, input_dir, device):
|
||||||
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
|
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
|
||||||
|
self.device = device
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.input_files)
|
return len(self.input_files)
|
||||||
|
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
# Load high-quality audio
|
# Load high-quality audio
|
||||||
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
|
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
|
||||||
@ -32,4 +30,24 @@ class AudioDataset(Dataset):
|
|||||||
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
||||||
low_quality_audio = resample_transform_high(low_quality_audio)
|
low_quality_audio = resample_transform_high(low_quality_audio)
|
||||||
|
|
||||||
return (AudioUtils.stereo_tensor_to_mono(high_quality_audio), original_sample_rate), (AudioUtils.stereo_tensor_to_mono(low_quality_audio), mangled_sample_rate)
|
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
|
||||||
|
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio)
|
||||||
|
|
||||||
|
# Pad or truncate high-quality audio
|
||||||
|
if high_quality_audio.shape[1] < self.MAX_LENGTH:
|
||||||
|
padding = self.MAX_LENGTH - high_quality_audio.shape[1]
|
||||||
|
high_quality_audio = F.pad(high_quality_audio, (0, padding))
|
||||||
|
elif high_quality_audio.shape[1] > self.MAX_LENGTH:
|
||||||
|
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH]
|
||||||
|
|
||||||
|
# Pad or truncate low-quality audio
|
||||||
|
if low_quality_audio.shape[1] < self.MAX_LENGTH:
|
||||||
|
padding = self.MAX_LENGTH - low_quality_audio.shape[1]
|
||||||
|
low_quality_audio = F.pad(low_quality_audio, (0, padding))
|
||||||
|
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
|
||||||
|
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
|
||||||
|
|
||||||
|
high_quality_audio = high_quality_audio.to(self.device)
|
||||||
|
low_quality_audio = low_quality_audio.to(self.device)
|
||||||
|
|
||||||
|
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)
|
||||||
|
@ -2,36 +2,62 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.utils as utils
|
import torch.nn.utils as utils
|
||||||
|
|
||||||
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
|
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True):
|
||||||
padding = (kernel_size // 2) * dilation
|
padding = (kernel_size // 2) * dilation
|
||||||
return nn.Sequential(
|
conv_layer = nn.Conv1d(
|
||||||
utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)),
|
in_channels,
|
||||||
nn.BatchNorm1d(out_channels),
|
out_channels,
|
||||||
nn.LeakyReLU(0.2, inplace=True) # Changed activation to LeakyReLU
|
kernel_size=kernel_size,
|
||||||
|
stride=stride,
|
||||||
|
dilation=dilation,
|
||||||
|
padding=padding
|
||||||
)
|
)
|
||||||
|
|
||||||
class SISUDiscriminator(nn.Module):
|
if spectral_norm:
|
||||||
def __init__(self):
|
conv_layer = utils.spectral_norm(conv_layer)
|
||||||
super(SISUDiscriminator, self).__init__()
|
|
||||||
layers = 4 # Increased base layer count
|
|
||||||
self.model = nn.Sequential(
|
|
||||||
# Initial Convolution
|
|
||||||
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample
|
|
||||||
|
|
||||||
# Core Discriminator Blocks with varied kernels and dilations
|
layers = [conv_layer]
|
||||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample
|
layers.append(nn.LeakyReLU(0.2, inplace=True))
|
||||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
|
|
||||||
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=16),
|
if use_instance_norm:
|
||||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=8),
|
layers.append(nn.InstanceNorm1d(out_channels))
|
||||||
discriminator_block(layers * 2, layers, kernel_size=3, dilation=1),
|
|
||||||
# Final Convolution
|
return nn.Sequential(*layers)
|
||||||
discriminator_block(layers, 1, kernel_size=3, stride=1),
|
|
||||||
|
class AttentionBlock(nn.Module):
|
||||||
|
def __init__(self, channels):
|
||||||
|
super(AttentionBlock, self).__init__()
|
||||||
|
self.attention = nn.Sequential(
|
||||||
|
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||||
|
nn.Sigmoid()
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
attention_weights = self.attention(x)
|
||||||
|
return x * attention_weights
|
||||||
|
|
||||||
|
class SISUDiscriminator(nn.Module):
|
||||||
|
def __init__(self, base_channels=16):
|
||||||
|
super(SISUDiscriminator, self).__init__()
|
||||||
|
layers = base_channels
|
||||||
|
self.model = nn.Sequential(
|
||||||
|
discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False),
|
||||||
|
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
|
||||||
|
discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True),
|
||||||
|
AttentionBlock(layers * 4),
|
||||||
|
discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True),
|
||||||
|
discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
|
||||||
|
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
|
||||||
|
discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
|
||||||
|
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False)
|
||||||
|
)
|
||||||
|
|
||||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
# Gaussian noise is not necessary here for discriminator as it is already implicit in the training process
|
|
||||||
x = self.model(x)
|
x = self.model(x)
|
||||||
x = self.global_avg_pool(x)
|
x = self.global_avg_pool(x)
|
||||||
x = x.view(-1, 1)
|
x = x.view(x.size(0), -1)
|
||||||
return x
|
return x
|
||||||
|
28
file_utils.py
Normal file
28
file_utils.py
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
import json
|
||||||
|
|
||||||
|
filepath = "my_data.json"
|
||||||
|
|
||||||
|
def write_data(filepath, data):
|
||||||
|
try:
|
||||||
|
with open(filepath, 'w') as f:
|
||||||
|
json.dump(data, f, indent=4) # Use indent for pretty formatting
|
||||||
|
print(f"Data written to '{filepath}'")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error writing to file: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
def read_data(filepath):
|
||||||
|
try:
|
||||||
|
with open(filepath, 'r') as f:
|
||||||
|
data = json.load(f)
|
||||||
|
print(f"Data read from '{filepath}'")
|
||||||
|
return data
|
||||||
|
except FileNotFoundError:
|
||||||
|
print(f"File not found: {filepath}")
|
||||||
|
return None
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
print(f"Error decoding JSON from file: {filepath}")
|
||||||
|
return None
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error reading from file: {e}")
|
||||||
|
return None
|
86
generator.py
86
generator.py
@ -1,36 +1,74 @@
|
|||||||
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
||||||
return nn.Sequential(
|
return nn.Sequential(
|
||||||
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
|
nn.Conv1d(
|
||||||
nn.BatchNorm1d(out_channels),
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=kernel_size,
|
||||||
|
dilation=dilation,
|
||||||
|
padding=(kernel_size // 2) * dilation
|
||||||
|
),
|
||||||
|
nn.InstanceNorm1d(out_channels),
|
||||||
nn.PReLU()
|
nn.PReLU()
|
||||||
)
|
)
|
||||||
|
|
||||||
class SISUGenerator(nn.Module):
|
class AttentionBlock(nn.Module):
|
||||||
def __init__(self):
|
"""
|
||||||
super(SISUGenerator, self).__init__()
|
Simple Channel Attention Block. Learns to weight channels based on their importance.
|
||||||
layer = 4 # Increased base layer count
|
"""
|
||||||
self.conv1 = nn.Sequential(
|
def __init__(self, channels):
|
||||||
nn.Conv1d(1, layer, kernel_size=7, padding=3),
|
super(AttentionBlock, self).__init__()
|
||||||
nn.BatchNorm1d(layer),
|
self.attention = nn.Sequential(
|
||||||
nn.PReLU(),
|
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||||
)
|
nn.ReLU(inplace=True),
|
||||||
self.conv_blocks = nn.Sequential(
|
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||||
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
nn.Sigmoid()
|
||||||
conv_block(layer, layer*2, kernel_size=5, dilation=2), # Local Context
|
|
||||||
conv_block(layer*2, layer*2, kernel_size=3, dilation=16), # Longer range dependencies
|
|
||||||
conv_block(layer*2, layer*2, kernel_size=5, dilation=8), # Wider context
|
|
||||||
conv_block(layer*2, layer, kernel_size=5, dilation=2), # Local Context
|
|
||||||
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
|
||||||
)
|
|
||||||
self.final_layer = nn.Sequential(
|
|
||||||
nn.Conv1d(layer, 1, kernel_size=3, padding=1),
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
attention_weights = self.attention(x)
|
||||||
|
return x * attention_weights
|
||||||
|
|
||||||
|
class ResidualInResidualBlock(nn.Module):
|
||||||
|
def __init__(self, channels, num_convs=3):
|
||||||
|
super(ResidualInResidualBlock, self).__init__()
|
||||||
|
|
||||||
|
self.conv_layers = nn.Sequential(
|
||||||
|
*[conv_block(channels, channels) for _ in range(num_convs)]
|
||||||
|
)
|
||||||
|
|
||||||
|
self.attention = AttentionBlock(channels)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
residual = x
|
residual = x
|
||||||
x = self.conv1(x)
|
x = self.conv_layers(x)
|
||||||
x = self.conv_blocks(x)
|
x = self.attention(x)
|
||||||
x = self.final_layer(x)
|
|
||||||
return x + residual
|
return x + residual
|
||||||
|
|
||||||
|
class SISUGenerator(nn.Module):
|
||||||
|
def __init__(self, channels=16, num_rirb=4, alpha=1.0):
|
||||||
|
super(SISUGenerator, self).__init__()
|
||||||
|
self.alpha = alpha
|
||||||
|
|
||||||
|
self.conv1 = nn.Sequential(
|
||||||
|
nn.Conv1d(1, channels, kernel_size=7, padding=3),
|
||||||
|
nn.InstanceNorm1d(channels),
|
||||||
|
nn.PReLU(),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.rir_blocks = nn.Sequential(
|
||||||
|
*[ResidualInResidualBlock(channels) for _ in range(num_rirb)]
|
||||||
|
)
|
||||||
|
|
||||||
|
self.final_layer = nn.Conv1d(channels, 1, kernel_size=3, padding=1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
residual_input = x
|
||||||
|
x = self.conv1(x)
|
||||||
|
x_rirb_out = self.rir_blocks(x)
|
||||||
|
learned_residual = self.final_layer(x_rirb_out)
|
||||||
|
output = residual_input + self.alpha * learned_residual
|
||||||
|
|
||||||
|
return output
|
||||||
|
@ -4,11 +4,9 @@ Jinja2==3.1.4
|
|||||||
MarkupSafe==2.1.5
|
MarkupSafe==2.1.5
|
||||||
mpmath==1.3.0
|
mpmath==1.3.0
|
||||||
networkx==3.4.2
|
networkx==3.4.2
|
||||||
numpy==2.2.1
|
numpy==2.2.3
|
||||||
pytorch-triton-rocm==3.2.0+git0d4682f0
|
pillow==11.0.0
|
||||||
setuptools==70.2.0
|
setuptools==70.2.0
|
||||||
sympy==1.13.1
|
sympy==1.13.3
|
||||||
torch==2.6.0.dev20241222+rocm6.2.4
|
|
||||||
torchaudio==2.6.0.dev20241222+rocm6.2.4
|
|
||||||
tqdm==4.67.1
|
tqdm==4.67.1
|
||||||
typing_extensions==4.12.2
|
typing_extensions==4.12.2
|
||||||
|
209
training.py
209
training.py
@ -10,6 +10,8 @@ import argparse
|
|||||||
|
|
||||||
import math
|
import math
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
from torch.utils.data import random_split
|
from torch.utils.data import random_split
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
@ -18,42 +20,10 @@ from data import AudioDataset
|
|||||||
from generator import SISUGenerator
|
from generator import SISUGenerator
|
||||||
from discriminator import SISUDiscriminator
|
from discriminator import SISUDiscriminator
|
||||||
|
|
||||||
def perceptual_loss(y_true, y_pred):
|
from training_utils import discriminator_train, generator_train
|
||||||
return torch.mean((y_true - y_pred) ** 2)
|
import file_utils as Data
|
||||||
|
|
||||||
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
|
import torchaudio.transforms as T
|
||||||
optimizer_d.zero_grad()
|
|
||||||
|
|
||||||
# Forward pass for real samples
|
|
||||||
discriminator_decision_from_real = discriminator(high_quality[0])
|
|
||||||
d_loss_real = criterion_d(discriminator_decision_from_real, real_labels)
|
|
||||||
|
|
||||||
# Forward pass for fake samples (from generator output)
|
|
||||||
generator_output = generator(low_quality[0])
|
|
||||||
discriminator_decision_from_fake = discriminator(generator_output.detach())
|
|
||||||
d_loss_fake = criterion_d(discriminator_decision_from_fake, fake_labels)
|
|
||||||
|
|
||||||
# Combine real and fake losses
|
|
||||||
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
|
||||||
|
|
||||||
# Backward pass and optimization
|
|
||||||
d_loss.backward()
|
|
||||||
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
|
|
||||||
optimizer_d.step()
|
|
||||||
|
|
||||||
return d_loss
|
|
||||||
|
|
||||||
def generator_train(low_quality, real_labels):
|
|
||||||
optimizer_g.zero_grad()
|
|
||||||
|
|
||||||
# Forward pass for fake samples (from generator output)
|
|
||||||
generator_output = generator(low_quality[0])
|
|
||||||
discriminator_decision = discriminator(generator_output)
|
|
||||||
g_loss = criterion_g(discriminator_decision, real_labels)
|
|
||||||
|
|
||||||
g_loss.backward()
|
|
||||||
optimizer_g.step()
|
|
||||||
return generator_output
|
|
||||||
|
|
||||||
# Init script argument parser
|
# Init script argument parser
|
||||||
parser = argparse.ArgumentParser(description="Training script")
|
parser = argparse.ArgumentParser(description="Training script")
|
||||||
@ -61,47 +31,78 @@ parser.add_argument("--generator", type=str, default=None,
|
|||||||
help="Path to the generator model file")
|
help="Path to the generator model file")
|
||||||
parser.add_argument("--discriminator", type=str, default=None,
|
parser.add_argument("--discriminator", type=str, default=None,
|
||||||
help="Path to the discriminator model file")
|
help="Path to the discriminator model file")
|
||||||
|
parser.add_argument("--device", type=str, default="cpu", help="Select device")
|
||||||
|
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
|
||||||
|
parser.add_argument("--debug", action="store_true", help="Print debug logs")
|
||||||
|
parser.add_argument("--continue_training", action="store_true", help="Continue training using temp_generator and temp_discriminator models")
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Check for CUDA availability
|
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
||||||
print(f"Using device: {device}")
|
print(f"Using device: {device}")
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
sample_rate = 44100
|
||||||
|
n_fft = 2048
|
||||||
|
hop_length = 256
|
||||||
|
win_length = n_fft
|
||||||
|
n_mels = 128
|
||||||
|
n_mfcc = 20 # If using MFCC
|
||||||
|
|
||||||
|
mfcc_transform = T.MFCC(
|
||||||
|
sample_rate,
|
||||||
|
n_mfcc,
|
||||||
|
melkwargs = {'n_fft': n_fft, 'hop_length': hop_length}
|
||||||
|
).to(device)
|
||||||
|
|
||||||
|
mel_transform = T.MelSpectrogram(
|
||||||
|
sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length,
|
||||||
|
win_length=win_length, n_mels=n_mels, power=1.0 # Magnitude Mel
|
||||||
|
).to(device)
|
||||||
|
|
||||||
|
stft_transform = T.Spectrogram(
|
||||||
|
n_fft=n_fft, win_length=win_length, hop_length=hop_length
|
||||||
|
).to(device)
|
||||||
|
|
||||||
|
debug = args.debug
|
||||||
|
|
||||||
# Initialize dataset and dataloader
|
# Initialize dataset and dataloader
|
||||||
dataset_dir = './dataset/good'
|
dataset_dir = './dataset/good'
|
||||||
dataset = AudioDataset(dataset_dir)
|
dataset = AudioDataset(dataset_dir, device)
|
||||||
|
models_dir = "models"
|
||||||
# ========= MULTIPLE =========
|
os.makedirs(models_dir, exist_ok=True)
|
||||||
|
audio_output_dir = "output"
|
||||||
# dataset_size = len(dataset)
|
os.makedirs(audio_output_dir, exist_ok=True)
|
||||||
# train_size = int(dataset_size * .9)
|
|
||||||
# val_size = int(dataset_size-train_size)
|
|
||||||
|
|
||||||
#train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
|
||||||
|
|
||||||
# train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
|
|
||||||
# val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
|
|
||||||
|
|
||||||
# ========= SINGLE =========
|
# ========= SINGLE =========
|
||||||
|
|
||||||
train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
|
train_data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
|
||||||
|
|
||||||
|
|
||||||
|
# ========= MODELS =========
|
||||||
|
|
||||||
# Initialize models and move them to device
|
|
||||||
generator = SISUGenerator()
|
generator = SISUGenerator()
|
||||||
discriminator = SISUDiscriminator()
|
discriminator = SISUDiscriminator()
|
||||||
|
|
||||||
if args.generator is not None:
|
epoch: int = args.epoch
|
||||||
generator.load_state_dict(torch.load(args.generator, weights_only=True))
|
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
|
||||||
if args.discriminator is not None:
|
|
||||||
discriminator.load_state_dict(torch.load(args.discriminator, weights_only=True))
|
if args.continue_training:
|
||||||
|
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
|
||||||
|
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
|
||||||
|
epoch = epoch_from_file["epoch"] + 1
|
||||||
|
else:
|
||||||
|
if args.generator is not None:
|
||||||
|
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
|
||||||
|
if args.discriminator is not None:
|
||||||
|
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
|
||||||
|
|
||||||
generator = generator.to(device)
|
generator = generator.to(device)
|
||||||
discriminator = discriminator.to(device)
|
discriminator = discriminator.to(device)
|
||||||
|
|
||||||
# Loss
|
# Loss
|
||||||
criterion_g = nn.MSELoss()
|
criterion_g = nn.BCEWithLogitsLoss()
|
||||||
criterion_d = nn.BCELoss()
|
criterion_d = nn.BCEWithLogitsLoss()
|
||||||
|
|
||||||
# Optimizers
|
# Optimizers
|
||||||
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||||
@ -112,31 +113,6 @@ scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min'
|
|||||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
||||||
|
|
||||||
def start_training():
|
def start_training():
|
||||||
|
|
||||||
# Training loop
|
|
||||||
|
|
||||||
# ========= DISCRIMINATOR PRE-TRAINING =========
|
|
||||||
# discriminator_epochs = 1
|
|
||||||
# for discriminator_epoch in range(discriminator_epochs):
|
|
||||||
|
|
||||||
# # ========= TRAINING =========
|
|
||||||
# for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
|
|
||||||
# high_quality_sample = high_quality_clip[0].to(device)
|
|
||||||
# low_quality_sample = low_quality_clip[0].to(device)
|
|
||||||
|
|
||||||
# scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
|
|
||||||
|
|
||||||
# # ========= LABELS =========
|
|
||||||
# batch_size = high_quality_sample.size(0)
|
|
||||||
# real_labels = torch.ones(batch_size, 1).to(device)
|
|
||||||
# fake_labels = torch.zeros(batch_size, 1).to(device)
|
|
||||||
|
|
||||||
# # ========= DISCRIMINATOR =========
|
|
||||||
# discriminator.train()
|
|
||||||
# discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
|
|
||||||
|
|
||||||
# torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
|
|
||||||
|
|
||||||
generator_epochs = 5000
|
generator_epochs = 5000
|
||||||
for generator_epoch in range(generator_epochs):
|
for generator_epoch in range(generator_epochs):
|
||||||
low_quality_audio = (torch.empty((1)), 1)
|
low_quality_audio = (torch.empty((1)), 1)
|
||||||
@ -146,10 +122,10 @@ def start_training():
|
|||||||
times_correct = 0
|
times_correct = 0
|
||||||
|
|
||||||
# ========= TRAINING =========
|
# ========= TRAINING =========
|
||||||
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
|
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
|
||||||
# for high_quality_clip, low_quality_clip in train_data_loader:
|
# for high_quality_clip, low_quality_clip in train_data_loader:
|
||||||
high_quality_sample = (high_quality_clip[0].to(device), high_quality_clip[1])
|
high_quality_sample = (high_quality_clip[0], high_quality_clip[1])
|
||||||
low_quality_sample = (low_quality_clip[0].to(device), low_quality_clip[1])
|
low_quality_sample = (low_quality_clip[0], low_quality_clip[1])
|
||||||
|
|
||||||
# ========= LABELS =========
|
# ========= LABELS =========
|
||||||
batch_size = high_quality_clip[0].size(0)
|
batch_size = high_quality_clip[0].size(0)
|
||||||
@ -158,32 +134,61 @@ def start_training():
|
|||||||
|
|
||||||
# ========= DISCRIMINATOR =========
|
# ========= DISCRIMINATOR =========
|
||||||
discriminator.train()
|
discriminator.train()
|
||||||
discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
|
d_loss = discriminator_train(
|
||||||
|
high_quality_sample,
|
||||||
|
low_quality_sample,
|
||||||
|
real_labels,
|
||||||
|
fake_labels,
|
||||||
|
discriminator,
|
||||||
|
generator,
|
||||||
|
criterion_d,
|
||||||
|
optimizer_d
|
||||||
|
)
|
||||||
|
|
||||||
# ========= GENERATOR =========
|
# ========= GENERATOR =========
|
||||||
generator.train()
|
generator.train()
|
||||||
generator_output = generator_train(low_quality_sample, real_labels)
|
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
|
||||||
|
low_quality_sample,
|
||||||
|
high_quality_sample,
|
||||||
|
real_labels,
|
||||||
|
generator,
|
||||||
|
discriminator,
|
||||||
|
criterion_d,
|
||||||
|
optimizer_g,
|
||||||
|
device,
|
||||||
|
mel_transform,
|
||||||
|
stft_transform,
|
||||||
|
mfcc_transform
|
||||||
|
)
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
|
||||||
|
scheduler_d.step(d_loss.detach())
|
||||||
|
scheduler_g.step(adversarial_loss.detach())
|
||||||
|
|
||||||
# ========= SAVE LATEST AUDIO =========
|
# ========= SAVE LATEST AUDIO =========
|
||||||
high_quality_audio = high_quality_clip
|
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0])
|
||||||
low_quality_audio = low_quality_clip
|
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0])
|
||||||
ai_enhanced_audio = (generator_output, high_quality_clip[1])
|
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0])
|
||||||
|
|
||||||
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
|
new_epoch = generator_epoch+epoch
|
||||||
#print(f"Generator metric {metric}!")
|
|
||||||
#scheduler_g.step(metric)
|
|
||||||
|
|
||||||
if generator_epoch % 10 == 0:
|
if generator_epoch % 25 == 0:
|
||||||
print(f"Saved epoch {generator_epoch}!")
|
print(f"Saved epoch {new_epoch}!")
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
|
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
|
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
|
||||||
|
|
||||||
torch.save(discriminator.state_dict(), f"models/current-epoch-discriminator.pt")
|
#if debug:
|
||||||
torch.save(generator.state_dict(), f"models/current-epoch-generator.pt")
|
# print(generator.state_dict().keys())
|
||||||
|
# print(discriminator.state_dict().keys())
|
||||||
|
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
|
||||||
|
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
|
||||||
|
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
|
||||||
|
|
||||||
torch.save(discriminator.state_dict(), "models/epoch-5000-discriminator.pt")
|
|
||||||
torch.save(generator.state_dict(), "models/epoch-5000-generator.pt")
|
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
|
||||||
|
torch.save(generator, "models/epoch-5000-generator.pt")
|
||||||
print("Training complete!")
|
print("Training complete!")
|
||||||
|
|
||||||
start_training()
|
start_training()
|
||||||
|
144
training_utils.py
Normal file
144
training_utils.py
Normal file
@ -0,0 +1,144 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
|
||||||
|
import torchaudio
|
||||||
|
import torchaudio.transforms as T
|
||||||
|
|
||||||
|
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
|
||||||
|
mfccs_true = mfcc_transform(y_true)
|
||||||
|
mfccs_pred = mfcc_transform(y_pred)
|
||||||
|
|
||||||
|
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
|
||||||
|
mfccs_true = mfccs_true[:, :, :min_len]
|
||||||
|
mfccs_pred = mfccs_pred[:, :, :min_len]
|
||||||
|
|
||||||
|
loss = torch.mean((mfccs_true - mfccs_pred)**2)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
|
||||||
|
mel_spec_true = mel_transform(y_true)
|
||||||
|
mel_spec_pred = mel_transform(y_pred)
|
||||||
|
|
||||||
|
# Ensure same time dimension length (due to potential framing differences)
|
||||||
|
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
|
||||||
|
mel_spec_true = mel_spec_true[..., :min_len]
|
||||||
|
mel_spec_pred = mel_spec_pred[..., :min_len]
|
||||||
|
|
||||||
|
# L1 Loss (Mean Absolute Error)
|
||||||
|
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
|
||||||
|
mel_spec_true = mel_transform(y_true)
|
||||||
|
mel_spec_pred = mel_transform(y_pred)
|
||||||
|
|
||||||
|
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
|
||||||
|
mel_spec_true = mel_spec_true[..., :min_len]
|
||||||
|
mel_spec_pred = mel_spec_pred[..., :min_len]
|
||||||
|
|
||||||
|
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
|
||||||
|
stft_mag_true = stft_transform(y_true)
|
||||||
|
stft_mag_pred = stft_transform(y_pred)
|
||||||
|
|
||||||
|
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
|
||||||
|
stft_mag_true = stft_mag_true[..., :min_len]
|
||||||
|
stft_mag_pred = stft_mag_pred[..., :min_len]
|
||||||
|
|
||||||
|
loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
|
||||||
|
stft_mag_true = stft_transform(y_true)
|
||||||
|
stft_mag_pred = stft_transform(y_pred)
|
||||||
|
|
||||||
|
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
|
||||||
|
stft_mag_true = stft_mag_true[..., :min_len]
|
||||||
|
stft_mag_pred = stft_mag_pred[..., :min_len]
|
||||||
|
|
||||||
|
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
|
||||||
|
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
|
||||||
|
|
||||||
|
loss = torch.mean(norm_diff / (norm_true + eps))
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
# Forward pass for real samples
|
||||||
|
discriminator_decision_from_real = discriminator(high_quality[0])
|
||||||
|
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
generator_output = generator(low_quality[0])
|
||||||
|
discriminator_decision_from_fake = discriminator(generator_output)
|
||||||
|
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
|
||||||
|
|
||||||
|
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
||||||
|
|
||||||
|
d_loss.backward()
|
||||||
|
# Optional: Gradient Clipping (can be helpful)
|
||||||
|
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
return d_loss
|
||||||
|
|
||||||
|
def generator_train(
|
||||||
|
low_quality,
|
||||||
|
high_quality,
|
||||||
|
real_labels,
|
||||||
|
generator,
|
||||||
|
discriminator,
|
||||||
|
adv_criterion,
|
||||||
|
g_optimizer,
|
||||||
|
device,
|
||||||
|
mel_transform: T.MelSpectrogram,
|
||||||
|
stft_transform: T.Spectrogram,
|
||||||
|
mfcc_transform: T.MFCC,
|
||||||
|
lambda_adv: float = 1.0,
|
||||||
|
lambda_mel_l1: float = 10.0,
|
||||||
|
lambda_log_stft: float = 1.0,
|
||||||
|
lambda_mfcc: float = 1.0
|
||||||
|
):
|
||||||
|
g_optimizer.zero_grad()
|
||||||
|
|
||||||
|
generator_output = generator(low_quality[0])
|
||||||
|
|
||||||
|
discriminator_decision = discriminator(generator_output)
|
||||||
|
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
|
||||||
|
|
||||||
|
mel_l1 = 0.0
|
||||||
|
log_stft_l1 = 0.0
|
||||||
|
mfcc_l = 0.0
|
||||||
|
|
||||||
|
# Calculate Mel L1 Loss if weight is positive
|
||||||
|
if lambda_mel_l1 > 0:
|
||||||
|
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output)
|
||||||
|
|
||||||
|
# Calculate Log STFT L1 Loss if weight is positive
|
||||||
|
if lambda_log_stft > 0:
|
||||||
|
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality[0], generator_output)
|
||||||
|
|
||||||
|
# Calculate MFCC Loss if weight is positive
|
||||||
|
if lambda_mfcc > 0:
|
||||||
|
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality[0], generator_output)
|
||||||
|
|
||||||
|
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
|
||||||
|
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
|
||||||
|
mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
|
||||||
|
|
||||||
|
combined_loss = (lambda_adv * adversarial_loss) + \
|
||||||
|
(lambda_mel_l1 * mel_l1_tensor) + \
|
||||||
|
(lambda_log_stft * log_stft_l1_tensor) + \
|
||||||
|
(lambda_mfcc * mfcc_l_tensor)
|
||||||
|
|
||||||
|
combined_loss.backward()
|
||||||
|
# Optional: Gradient Clipping
|
||||||
|
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
|
||||||
|
g_optimizer.step()
|
||||||
|
|
||||||
|
# 6. Return values for logging
|
||||||
|
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor
|
Loading…
Reference in New Issue
Block a user