Compare commits

..

No commits in common. "3c18a3e9629510c6252dd11127925b7a99051913" and "f615b39ded89b05ce23c6ebdd72849d5ff82ff2d" have entirely different histories.

8 changed files with 163 additions and 414 deletions

View File

@ -18,7 +18,6 @@ SISU (Super Ingenious Sound Upscaler) is a project that uses GANs (Generative Ad
1. **Set Up**: 1. **Set Up**:
- Make sure you have Python installed (version 3.8 or higher). - Make sure you have Python installed (version 3.8 or higher).
- Install needed packages: `pip install -r requirements.txt` - Install needed packages: `pip install -r requirements.txt`
- Install current version of PyTorch (CUDA/ROCm/What ever your device supports)
2. **Prepare Audio Data**: 2. **Prepare Audio Data**:
- Put your audio files in the `dataset/good` folder. - Put your audio files in the `dataset/good` folder.

30
data.py
View File

@ -4,20 +4,22 @@ import torch
import torchaudio import torchaudio
import os import os
import random import random
import torchaudio.transforms as T import torchaudio.transforms as T
import AudioUtils import AudioUtils
class AudioDataset(Dataset): class AudioDataset(Dataset):
#audio_sample_rates = [8000, 11025, 16000, 22050]
audio_sample_rates = [11025] audio_sample_rates = [11025]
MAX_LENGTH = 44100 # Define your desired maximum length here
def __init__(self, input_dir, device): def __init__(self, input_dir):
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')] self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
self.device = device
def __len__(self): def __len__(self):
return len(self.input_files) return len(self.input_files)
def __getitem__(self, idx): def __getitem__(self, idx):
# Load high-quality audio # Load high-quality audio
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True) high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
@ -30,24 +32,4 @@ class AudioDataset(Dataset):
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate) resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
low_quality_audio = resample_transform_high(low_quality_audio) low_quality_audio = resample_transform_high(low_quality_audio)
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio) return (AudioUtils.stereo_tensor_to_mono(high_quality_audio), original_sample_rate), (AudioUtils.stereo_tensor_to_mono(low_quality_audio), mangled_sample_rate)
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio)
# Pad or truncate high-quality audio
if high_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - high_quality_audio.shape[1]
high_quality_audio = F.pad(high_quality_audio, (0, padding))
elif high_quality_audio.shape[1] > self.MAX_LENGTH:
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH]
# Pad or truncate low-quality audio
if low_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - low_quality_audio.shape[1]
low_quality_audio = F.pad(low_quality_audio, (0, padding))
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
high_quality_audio = high_quality_audio.to(self.device)
low_quality_audio = low_quality_audio.to(self.device)
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)

View File

@ -2,62 +2,40 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.utils as utils import torch.nn.utils as utils
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True): def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
padding = (kernel_size // 2) * dilation padding = (kernel_size // 2) * dilation
conv_layer = nn.Conv1d( return nn.Sequential(
in_channels, utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)),
out_channels, nn.BatchNorm1d(out_channels),
kernel_size=kernel_size, nn.LeakyReLU(0.2, inplace=True) # Changed activation to LeakyReLU
stride=stride,
dilation=dilation,
padding=padding
) )
if spectral_norm:
conv_layer = utils.spectral_norm(conv_layer)
layers = [conv_layer]
layers.append(nn.LeakyReLU(0.2, inplace=True))
if use_instance_norm:
layers.append(nn.InstanceNorm1d(out_channels))
return nn.Sequential(*layers)
class AttentionBlock(nn.Module):
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
attention_weights = self.attention(x)
return x * attention_weights
class SISUDiscriminator(nn.Module): class SISUDiscriminator(nn.Module):
def __init__(self, base_channels=16): def __init__(self):
super(SISUDiscriminator, self).__init__() super(SISUDiscriminator, self).__init__()
layers = base_channels layers = 32 # Increased base layer count
self.model = nn.Sequential( self.model = nn.Sequential(
discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False), # Initial Convolution
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True), discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample
discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True),
AttentionBlock(layers * 4),
discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False)
)
# Core Discriminator Blocks with varied kernels and dilations
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample
discriminator_block(layers * 2, layers * 2, kernel_size=3, dilation=2),
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
discriminator_block(layers * 4, layers * 4, kernel_size=3, dilation=8),
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=16),
discriminator_block(layers * 8, layers * 8, kernel_size=3, dilation=8),
discriminator_block(layers * 8, layers * 4, kernel_size=5, dilation=4),
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=2),
discriminator_block(layers * 2, layers, kernel_size=5, dilation=1),
# Final Convolution
discriminator_block(layers, 1, kernel_size=3, stride=1),
)
self.global_avg_pool = nn.AdaptiveAvgPool1d(1) self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
def forward(self, x): def forward(self, x):
# Gaussian noise is not necessary here for discriminator as it is already implicit in the training process
x = self.model(x) x = self.model(x)
x = self.global_avg_pool(x) x = self.global_avg_pool(x)
x = x.view(x.size(0), -1) x = x.view(-1, 1)
return x return x

View File

@ -1,28 +0,0 @@
import json
filepath = "my_data.json"
def write_data(filepath, data):
try:
with open(filepath, 'w') as f:
json.dump(data, f, indent=4) # Use indent for pretty formatting
print(f"Data written to '{filepath}'")
except Exception as e:
print(f"Error writing to file: {e}")
def read_data(filepath):
try:
with open(filepath, 'r') as f:
data = json.load(f)
print(f"Data read from '{filepath}'")
return data
except FileNotFoundError:
print(f"File not found: {filepath}")
return None
except json.JSONDecodeError:
print(f"Error decoding JSON from file: {filepath}")
return None
except Exception as e:
print(f"Error reading from file: {e}")
return None

View File

@ -1,74 +1,39 @@
import torch
import torch.nn as nn import torch.nn as nn
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1): def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
return nn.Sequential( return nn.Sequential(
nn.Conv1d( nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
in_channels, nn.BatchNorm1d(out_channels),
out_channels,
kernel_size=kernel_size,
dilation=dilation,
padding=(kernel_size // 2) * dilation
),
nn.InstanceNorm1d(out_channels),
nn.PReLU() nn.PReLU()
) )
class AttentionBlock(nn.Module): class SISUGenerator(nn.Module):
""" def __init__(self):
Simple Channel Attention Block. Learns to weight channels based on their importance. super(SISUGenerator, self).__init__()
""" layer = 32 # Increased base layer count
def __init__(self, channels): self.conv1 = nn.Sequential(
super(AttentionBlock, self).__init__() nn.Conv1d(1, layer, kernel_size=7, padding=3),
self.attention = nn.Sequential( nn.BatchNorm1d(layer),
nn.Conv1d(channels, channels // 4, kernel_size=1), nn.PReLU(),
nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid()
) )
self.conv_blocks = nn.Sequential(
def forward(self, x): conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
attention_weights = self.attention(x) conv_block(layer, layer*2, kernel_size=5, dilation=2), # Local Context
return x * attention_weights conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
conv_block(layer*2, layer*4, kernel_size=7, dilation=8), # Longer range dependencies
class ResidualInResidualBlock(nn.Module): conv_block(layer*4, layer*4, kernel_size=3, dilation=16), # Longer range dependencies
def __init__(self, channels, num_convs=3): conv_block(layer*4, layer*2, kernel_size=5, dilation=8), # Wider context
super(ResidualInResidualBlock, self).__init__() conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
conv_block(layer*2, layer, kernel_size=5, dilation=2), # Local Context
self.conv_layers = nn.Sequential( conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
*[conv_block(channels, channels) for _ in range(num_convs)] )
self.final_layer = nn.Sequential(
nn.Conv1d(layer, 1, kernel_size=3, padding=1),
) )
self.attention = AttentionBlock(channels)
def forward(self, x): def forward(self, x):
residual = x residual = x
x = self.conv_layers(x)
x = self.attention(x)
return x + residual
class SISUGenerator(nn.Module):
def __init__(self, channels=16, num_rirb=4, alpha=1.0):
super(SISUGenerator, self).__init__()
self.alpha = alpha
self.conv1 = nn.Sequential(
nn.Conv1d(1, channels, kernel_size=7, padding=3),
nn.InstanceNorm1d(channels),
nn.PReLU(),
)
self.rir_blocks = nn.Sequential(
*[ResidualInResidualBlock(channels) for _ in range(num_rirb)]
)
self.final_layer = nn.Conv1d(channels, 1, kernel_size=3, padding=1)
def forward(self, x):
residual_input = x
x = self.conv1(x) x = self.conv1(x)
x_rirb_out = self.rir_blocks(x) x = self.conv_blocks(x)
learned_residual = self.final_layer(x_rirb_out) x = self.final_layer(x)
output = residual_input + self.alpha * learned_residual return x + residual
return output

View File

@ -4,9 +4,11 @@ Jinja2==3.1.4
MarkupSafe==2.1.5 MarkupSafe==2.1.5
mpmath==1.3.0 mpmath==1.3.0
networkx==3.4.2 networkx==3.4.2
numpy==2.2.3 numpy==2.2.1
pillow==11.0.0 pytorch-triton-rocm==3.2.0+git0d4682f0
setuptools==70.2.0 setuptools==70.2.0
sympy==1.13.3 sympy==1.13.1
torch==2.6.0.dev20241222+rocm6.2.4
torchaudio==2.6.0.dev20241222+rocm6.2.4
tqdm==4.67.1 tqdm==4.67.1
typing_extensions==4.12.2 typing_extensions==4.12.2

View File

@ -10,8 +10,6 @@ import argparse
import math import math
import os
from torch.utils.data import random_split from torch.utils.data import random_split
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
@ -20,10 +18,42 @@ from data import AudioDataset
from generator import SISUGenerator from generator import SISUGenerator
from discriminator import SISUDiscriminator from discriminator import SISUDiscriminator
from training_utils import discriminator_train, generator_train def perceptual_loss(y_true, y_pred):
import file_utils as Data return torch.mean((y_true - y_pred) ** 2)
import torchaudio.transforms as T def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
optimizer_d.zero_grad()
# Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality[0])
d_loss_real = criterion_d(discriminator_decision_from_real, real_labels)
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output.detach())
d_loss_fake = criterion_d(discriminator_decision_from_fake, fake_labels)
# Combine real and fake losses
d_loss = (d_loss_real + d_loss_fake) / 2.0
# Backward pass and optimization
d_loss.backward()
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer_d.step()
return d_loss
def generator_train(low_quality, real_labels):
optimizer_g.zero_grad()
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
discriminator_decision = discriminator(generator_output)
g_loss = criterion_g(discriminator_decision, real_labels)
g_loss.backward()
optimizer_g.step()
return generator_output
# Init script argument parser # Init script argument parser
parser = argparse.ArgumentParser(description="Training script") parser = argparse.ArgumentParser(description="Training script")
@ -31,78 +61,47 @@ parser.add_argument("--generator", type=str, default=None,
help="Path to the generator model file") help="Path to the generator model file")
parser.add_argument("--discriminator", type=str, default=None, parser.add_argument("--discriminator", type=str, default=None,
help="Path to the discriminator model file") help="Path to the discriminator model file")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
parser.add_argument("--debug", action="store_true", help="Print debug logs")
parser.add_argument("--continue_training", action="store_true", help="Continue training using temp_generator and temp_discriminator models")
args = parser.parse_args() args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu") # Check for CUDA availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}") print(f"Using device: {device}")
# Parameters
sample_rate = 44100
n_fft = 2048
hop_length = 256
win_length = n_fft
n_mels = 128
n_mfcc = 20 # If using MFCC
mfcc_transform = T.MFCC(
sample_rate,
n_mfcc,
melkwargs = {'n_fft': n_fft, 'hop_length': hop_length}
).to(device)
mel_transform = T.MelSpectrogram(
sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length,
win_length=win_length, n_mels=n_mels, power=1.0 # Magnitude Mel
).to(device)
stft_transform = T.Spectrogram(
n_fft=n_fft, win_length=win_length, hop_length=hop_length
).to(device)
debug = args.debug
# Initialize dataset and dataloader # Initialize dataset and dataloader
dataset_dir = './dataset/good' dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, device) dataset = AudioDataset(dataset_dir)
models_dir = "models"
os.makedirs(models_dir, exist_ok=True) # ========= MULTIPLE =========
audio_output_dir = "output"
os.makedirs(audio_output_dir, exist_ok=True) # dataset_size = len(dataset)
# train_size = int(dataset_size * .9)
# val_size = int(dataset_size-train_size)
#train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
# train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
# val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
# ========= SINGLE ========= # ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=64, shuffle=True) train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
# ========= MODELS =========
# Initialize models and move them to device
generator = SISUGenerator() generator = SISUGenerator()
discriminator = SISUDiscriminator() discriminator = SISUDiscriminator()
epoch: int = args.epoch if args.generator is not None:
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json") generator.load_state_dict(torch.load(args.generator, weights_only=True))
if args.discriminator is not None:
if args.continue_training: discriminator.load_state_dict(torch.load(args.discriminator, weights_only=True))
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
epoch = epoch_from_file["epoch"] + 1
else:
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
if args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
generator = generator.to(device) generator = generator.to(device)
discriminator = discriminator.to(device) discriminator = discriminator.to(device)
# Loss # Loss
criterion_g = nn.BCEWithLogitsLoss() criterion_g = nn.MSELoss()
criterion_d = nn.BCEWithLogitsLoss() criterion_d = nn.BCELoss()
# Optimizers # Optimizers
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999)) optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
@ -113,6 +112,31 @@ scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min'
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5) scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
def start_training(): def start_training():
# Training loop
# ========= DISCRIMINATOR PRE-TRAINING =========
# discriminator_epochs = 1
# for discriminator_epoch in range(discriminator_epochs):
# # ========= TRAINING =========
# for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
# high_quality_sample = high_quality_clip[0].to(device)
# low_quality_sample = low_quality_clip[0].to(device)
# scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
# # ========= LABELS =========
# batch_size = high_quality_sample.size(0)
# real_labels = torch.ones(batch_size, 1).to(device)
# fake_labels = torch.zeros(batch_size, 1).to(device)
# # ========= DISCRIMINATOR =========
# discriminator.train()
# discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
# torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
generator_epochs = 5000 generator_epochs = 5000
for generator_epoch in range(generator_epochs): for generator_epoch in range(generator_epochs):
low_quality_audio = (torch.empty((1)), 1) low_quality_audio = (torch.empty((1)), 1)
@ -122,10 +146,10 @@ def start_training():
times_correct = 0 times_correct = 0
# ========= TRAINING ========= # ========= TRAINING =========
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"): for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
# for high_quality_clip, low_quality_clip in train_data_loader: # for high_quality_clip, low_quality_clip in train_data_loader:
high_quality_sample = (high_quality_clip[0], high_quality_clip[1]) high_quality_sample = (high_quality_clip[0].to(device), high_quality_clip[1])
low_quality_sample = (low_quality_clip[0], low_quality_clip[1]) low_quality_sample = (low_quality_clip[0].to(device), low_quality_clip[1])
# ========= LABELS ========= # ========= LABELS =========
batch_size = high_quality_clip[0].size(0) batch_size = high_quality_clip[0].size(0)
@ -134,61 +158,32 @@ def start_training():
# ========= DISCRIMINATOR ========= # ========= DISCRIMINATOR =========
discriminator.train() discriminator.train()
d_loss = discriminator_train( discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
high_quality_sample,
low_quality_sample,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
# ========= GENERATOR ========= # ========= GENERATOR =========
generator.train() generator.train()
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train( generator_output = generator_train(low_quality_sample, real_labels)
low_quality_sample,
high_quality_sample,
real_labels,
generator,
discriminator,
criterion_d,
optimizer_g,
device,
mel_transform,
stft_transform,
mfcc_transform
)
if debug:
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
scheduler_d.step(d_loss.detach())
scheduler_g.step(adversarial_loss.detach())
# ========= SAVE LATEST AUDIO ========= # ========= SAVE LATEST AUDIO =========
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0]) high_quality_audio = high_quality_clip
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0]) low_quality_audio = low_quality_clip
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0]) ai_enhanced_audio = (generator_output, high_quality_clip[1])
new_epoch = generator_epoch+epoch #metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
#print(f"Generator metric {metric}!")
#scheduler_g.step(metric)
if generator_epoch % 25 == 0: if generator_epoch % 10 == 0:
print(f"Saved epoch {new_epoch}!") print(f"Saved epoch {generator_epoch}!")
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again. torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1]) torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1]) torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
#if debug: torch.save(discriminator.state_dict(), f"models/current-epoch-discriminator.pt")
# print(generator.state_dict().keys()) torch.save(generator.state_dict(), f"models/current-epoch-generator.pt")
# print(discriminator.state_dict().keys())
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
torch.save(discriminator.state_dict(), "models/epoch-5000-discriminator.pt")
torch.save(discriminator, "models/epoch-5000-discriminator.pt") torch.save(generator.state_dict(), "models/epoch-5000-generator.pt")
torch.save(generator, "models/epoch-5000-generator.pt")
print("Training complete!") print("Training complete!")
start_training() start_training()

View File

@ -1,144 +0,0 @@
import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
import torchaudio.transforms as T
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
mfccs_true = mfcc_transform(y_true)
mfccs_pred = mfcc_transform(y_pred)
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len]
loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
# Ensure same time dimension length (due to potential framing differences)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
# L1 Loss (Mean Absolute Error)
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
return loss
def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
return loss
def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
return loss
def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
loss = torch.mean(norm_diff / (norm_true + eps))
return loss
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
optimizer.zero_grad()
# Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality[0])
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
with torch.no_grad():
generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output)
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
d_loss = (d_loss_real + d_loss_fake) / 2.0
d_loss.backward()
# Optional: Gradient Clipping (can be helpful)
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer.step()
return d_loss
def generator_train(
low_quality,
high_quality,
real_labels,
generator,
discriminator,
adv_criterion,
g_optimizer,
device,
mel_transform: T.MelSpectrogram,
stft_transform: T.Spectrogram,
mfcc_transform: T.MFCC,
lambda_adv: float = 1.0,
lambda_mel_l1: float = 10.0,
lambda_log_stft: float = 1.0,
lambda_mfcc: float = 1.0
):
g_optimizer.zero_grad()
generator_output = generator(low_quality[0])
discriminator_decision = discriminator(generator_output)
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
mel_l1 = 0.0
log_stft_l1 = 0.0
mfcc_l = 0.0
# Calculate Mel L1 Loss if weight is positive
if lambda_mel_l1 > 0:
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output)
# Calculate Log STFT L1 Loss if weight is positive
if lambda_log_stft > 0:
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality[0], generator_output)
# Calculate MFCC Loss if weight is positive
if lambda_mfcc > 0:
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality[0], generator_output)
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
combined_loss = (lambda_adv * adversarial_loss) + \
(lambda_mel_l1 * mel_l1_tensor) + \
(lambda_log_stft * log_stft_l1_tensor) + \
(lambda_mfcc * mfcc_l_tensor)
combined_loss.backward()
# Optional: Gradient Clipping
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
g_optimizer.step()
# 6. Return values for logging
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor