Compare commits
No commits in common. "1717e7a0082c7068460df05d33552a43e14cf776" and "f615b39ded89b05ce23c6ebdd72849d5ff82ff2d" have entirely different histories.
1717e7a008
...
f615b39ded
43
data.py
43
data.py
@ -4,49 +4,32 @@ import torch
|
|||||||
import torchaudio
|
import torchaudio
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
from AudioUtils import stereo_tensor_to_mono, stretch_tensor
|
|
||||||
|
import torchaudio.transforms as T
|
||||||
|
import AudioUtils
|
||||||
|
|
||||||
class AudioDataset(Dataset):
|
class AudioDataset(Dataset):
|
||||||
|
#audio_sample_rates = [8000, 11025, 16000, 22050]
|
||||||
audio_sample_rates = [11025]
|
audio_sample_rates = [11025]
|
||||||
|
|
||||||
def __init__(self, input_dir):
|
def __init__(self, input_dir):
|
||||||
self.input_files = [
|
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
|
||||||
os.path.join(root, f)
|
|
||||||
for root, _, files in os.walk(input_dir)
|
|
||||||
for f in files if f.endswith('.wav')
|
|
||||||
]
|
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.input_files)
|
return len(self.input_files)
|
||||||
|
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
# Load high-quality audio
|
# Load high-quality audio
|
||||||
high_quality_path = self.input_files[idx]
|
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
|
||||||
high_quality_audio, original_sample_rate = torchaudio.load(high_quality_path)
|
|
||||||
high_quality_audio = stereo_tensor_to_mono(high_quality_audio)
|
|
||||||
|
|
||||||
# Generate low-quality audio with random downsampling
|
# Generate low-quality audio with random downsampling
|
||||||
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
||||||
resample_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
|
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
|
||||||
low_quality_audio = resample_low(high_quality_audio)
|
low_quality_audio = resample_transform_low(high_quality_audio)
|
||||||
|
|
||||||
resample_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
||||||
low_quality_audio = resample_high(low_quality_audio)
|
low_quality_audio = resample_transform_high(low_quality_audio)
|
||||||
|
|
||||||
# Pad or truncate to match a fixed length
|
return (AudioUtils.stereo_tensor_to_mono(high_quality_audio), original_sample_rate), (AudioUtils.stereo_tensor_to_mono(low_quality_audio), mangled_sample_rate)
|
||||||
target_length = 44100 # Adjust this based on your data
|
|
||||||
high_quality_audio = self.pad_or_truncate(high_quality_audio, target_length)
|
|
||||||
low_quality_audio = self.pad_or_truncate(low_quality_audio, target_length)
|
|
||||||
|
|
||||||
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)
|
|
||||||
|
|
||||||
def pad_or_truncate(self, tensor, target_length):
|
|
||||||
current_length = tensor.size(1)
|
|
||||||
if current_length < target_length:
|
|
||||||
# Pad with zeros
|
|
||||||
padding = target_length - current_length
|
|
||||||
tensor = F.pad(tensor, (0, padding))
|
|
||||||
else:
|
|
||||||
# Truncate to target length
|
|
||||||
tensor = tensor[:, :target_length]
|
|
||||||
return tensor
|
|
||||||
|
@ -5,34 +5,37 @@ import torch.nn.utils as utils
|
|||||||
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
|
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
|
||||||
padding = (kernel_size // 2) * dilation
|
padding = (kernel_size // 2) * dilation
|
||||||
return nn.Sequential(
|
return nn.Sequential(
|
||||||
utils.spectral_norm(
|
utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)),
|
||||||
nn.Conv1d(in_channels, out_channels,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
stride=stride,
|
|
||||||
dilation=dilation,
|
|
||||||
padding=padding
|
|
||||||
)
|
|
||||||
),
|
|
||||||
nn.BatchNorm1d(out_channels),
|
nn.BatchNorm1d(out_channels),
|
||||||
nn.LeakyReLU(0.2, inplace=True)
|
nn.LeakyReLU(0.2, inplace=True) # Changed activation to LeakyReLU
|
||||||
)
|
)
|
||||||
|
|
||||||
class SISUDiscriminator(nn.Module):
|
class SISUDiscriminator(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(SISUDiscriminator, self).__init__()
|
super(SISUDiscriminator, self).__init__()
|
||||||
layers = 4
|
layers = 32 # Increased base layer count
|
||||||
self.model = nn.Sequential(
|
self.model = nn.Sequential(
|
||||||
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1),
|
# Initial Convolution
|
||||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1),
|
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample
|
||||||
discriminator_block(layers * 2, layers * 4, kernel_size=3, dilation=4),
|
|
||||||
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=8),
|
# Core Discriminator Blocks with varied kernels and dilations
|
||||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=16),
|
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample
|
||||||
discriminator_block(layers * 2, layers, kernel_size=5, dilation=2),
|
discriminator_block(layers * 2, layers * 2, kernel_size=3, dilation=2),
|
||||||
discriminator_block(layers, 1, kernel_size=3, stride=1)
|
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
|
||||||
|
discriminator_block(layers * 4, layers * 4, kernel_size=3, dilation=8),
|
||||||
|
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=16),
|
||||||
|
discriminator_block(layers * 8, layers * 8, kernel_size=3, dilation=8),
|
||||||
|
discriminator_block(layers * 8, layers * 4, kernel_size=5, dilation=4),
|
||||||
|
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=2),
|
||||||
|
discriminator_block(layers * 2, layers, kernel_size=5, dilation=1),
|
||||||
|
# Final Convolution
|
||||||
|
discriminator_block(layers, 1, kernel_size=3, stride=1),
|
||||||
)
|
)
|
||||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
|
# Gaussian noise is not necessary here for discriminator as it is already implicit in the training process
|
||||||
x = self.model(x)
|
x = self.model(x)
|
||||||
x = self.global_avg_pool(x)
|
x = self.global_avg_pool(x)
|
||||||
return x.view(-1, 1)
|
x = x.view(-1, 1)
|
||||||
|
return x
|
||||||
|
38
generator.py
38
generator.py
@ -1,41 +1,39 @@
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
def conv_residual_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
||||||
padding = (kernel_size // 2) * dilation
|
|
||||||
return nn.Sequential(
|
return nn.Sequential(
|
||||||
nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation, padding=padding),
|
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
|
||||||
nn.BatchNorm1d(out_channels),
|
nn.BatchNorm1d(out_channels),
|
||||||
nn.PReLU(),
|
nn.PReLU()
|
||||||
nn.Conv1d(out_channels, out_channels, kernel_size, dilation=dilation, padding=padding),
|
|
||||||
nn.BatchNorm1d(out_channels)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
class SISUGenerator(nn.Module):
|
class SISUGenerator(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(SISUGenerator, self).__init__()
|
super(SISUGenerator, self).__init__()
|
||||||
layers = 4
|
layer = 32 # Increased base layer count
|
||||||
self.conv1 = nn.Sequential(
|
self.conv1 = nn.Sequential(
|
||||||
nn.Conv1d(1, layers, kernel_size=7, padding=3),
|
nn.Conv1d(1, layer, kernel_size=7, padding=3),
|
||||||
nn.BatchNorm1d(layers),
|
nn.BatchNorm1d(layer),
|
||||||
nn.PReLU()
|
nn.PReLU(),
|
||||||
)
|
)
|
||||||
|
|
||||||
self.conv_blocks = nn.Sequential(
|
self.conv_blocks = nn.Sequential(
|
||||||
conv_residual_block(layers, layers, kernel_size=3, dilation=1),
|
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
||||||
conv_residual_block(layers, layers * 2, kernel_size=5, dilation=2),
|
conv_block(layer, layer*2, kernel_size=5, dilation=2), # Local Context
|
||||||
conv_residual_block(layers * 2, layers * 4, kernel_size=3, dilation=16),
|
conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
|
||||||
conv_residual_block(layers * 4, layers * 2, kernel_size=5, dilation=8),
|
conv_block(layer*2, layer*4, kernel_size=7, dilation=8), # Longer range dependencies
|
||||||
conv_residual_block(layers * 2, layers, kernel_size=5, dilation=2),
|
conv_block(layer*4, layer*4, kernel_size=3, dilation=16), # Longer range dependencies
|
||||||
conv_residual_block(layers, layers, kernel_size=3, dilation=1)
|
conv_block(layer*4, layer*2, kernel_size=5, dilation=8), # Wider context
|
||||||
|
conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
|
||||||
|
conv_block(layer*2, layer, kernel_size=5, dilation=2), # Local Context
|
||||||
|
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
||||||
)
|
)
|
||||||
|
|
||||||
self.final_layer = nn.Sequential(
|
self.final_layer = nn.Sequential(
|
||||||
nn.Conv1d(layers, 1, kernel_size=3, padding=1)
|
nn.Conv1d(layer, 1, kernel_size=3, padding=1),
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
residual = x
|
residual = x
|
||||||
x = self.conv1(x)
|
x = self.conv1(x)
|
||||||
x = self.conv_blocks(x) + x # Adding residual connection after blocks
|
x = self.conv_blocks(x)
|
||||||
x = self.final_layer(x)
|
x = self.final_layer(x)
|
||||||
return x + residual
|
return x + residual
|
||||||
|
55
training.py
55
training.py
@ -55,11 +55,6 @@ def generator_train(low_quality, real_labels):
|
|||||||
optimizer_g.step()
|
optimizer_g.step()
|
||||||
return generator_output
|
return generator_output
|
||||||
|
|
||||||
def first(objects):
|
|
||||||
if len(objects) >= 1:
|
|
||||||
return objects[0]
|
|
||||||
return objects
|
|
||||||
|
|
||||||
# Init script argument parser
|
# Init script argument parser
|
||||||
parser = argparse.ArgumentParser(description="Training script")
|
parser = argparse.ArgumentParser(description="Training script")
|
||||||
parser.add_argument("--generator", type=str, default=None,
|
parser.add_argument("--generator", type=str, default=None,
|
||||||
@ -77,9 +72,20 @@ print(f"Using device: {device}")
|
|||||||
dataset_dir = './dataset/good'
|
dataset_dir = './dataset/good'
|
||||||
dataset = AudioDataset(dataset_dir)
|
dataset = AudioDataset(dataset_dir)
|
||||||
|
|
||||||
|
# ========= MULTIPLE =========
|
||||||
|
|
||||||
|
# dataset_size = len(dataset)
|
||||||
|
# train_size = int(dataset_size * .9)
|
||||||
|
# val_size = int(dataset_size-train_size)
|
||||||
|
|
||||||
|
#train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
||||||
|
|
||||||
|
# train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
|
||||||
|
# val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
|
||||||
|
|
||||||
# ========= SINGLE =========
|
# ========= SINGLE =========
|
||||||
|
|
||||||
train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
|
train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
|
||||||
|
|
||||||
# Initialize models and move them to device
|
# Initialize models and move them to device
|
||||||
generator = SISUGenerator()
|
generator = SISUGenerator()
|
||||||
@ -106,6 +112,31 @@ scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min'
|
|||||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
||||||
|
|
||||||
def start_training():
|
def start_training():
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
|
||||||
|
# ========= DISCRIMINATOR PRE-TRAINING =========
|
||||||
|
# discriminator_epochs = 1
|
||||||
|
# for discriminator_epoch in range(discriminator_epochs):
|
||||||
|
|
||||||
|
# # ========= TRAINING =========
|
||||||
|
# for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
|
||||||
|
# high_quality_sample = high_quality_clip[0].to(device)
|
||||||
|
# low_quality_sample = low_quality_clip[0].to(device)
|
||||||
|
|
||||||
|
# scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
|
||||||
|
|
||||||
|
# # ========= LABELS =========
|
||||||
|
# batch_size = high_quality_sample.size(0)
|
||||||
|
# real_labels = torch.ones(batch_size, 1).to(device)
|
||||||
|
# fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||||
|
|
||||||
|
# # ========= DISCRIMINATOR =========
|
||||||
|
# discriminator.train()
|
||||||
|
# discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
|
||||||
|
|
||||||
|
# torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
|
||||||
|
|
||||||
generator_epochs = 5000
|
generator_epochs = 5000
|
||||||
for generator_epoch in range(generator_epochs):
|
for generator_epoch in range(generator_epochs):
|
||||||
low_quality_audio = (torch.empty((1)), 1)
|
low_quality_audio = (torch.empty((1)), 1)
|
||||||
@ -134,15 +165,9 @@ def start_training():
|
|||||||
generator_output = generator_train(low_quality_sample, real_labels)
|
generator_output = generator_train(low_quality_sample, real_labels)
|
||||||
|
|
||||||
# ========= SAVE LATEST AUDIO =========
|
# ========= SAVE LATEST AUDIO =========
|
||||||
high_quality_audio = (first(high_quality_clip[0]), high_quality_clip[1][0])
|
high_quality_audio = high_quality_clip
|
||||||
low_quality_audio = (first(low_quality_clip[0]), low_quality_clip[1][0])
|
low_quality_audio = low_quality_clip
|
||||||
ai_enhanced_audio = (first(generator_output[0]), high_quality_clip[1][0])
|
ai_enhanced_audio = (generator_output, high_quality_clip[1])
|
||||||
print(high_quality_audio)
|
|
||||||
|
|
||||||
print(f"Saved epoch {generator_epoch}!")
|
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
|
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
|
|
||||||
|
|
||||||
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
|
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
|
||||||
#print(f"Generator metric {metric}!")
|
#print(f"Generator metric {metric}!")
|
||||||
|
Loading…
Reference in New Issue
Block a user