⚗️ | Experimenting with larger model architecture.
This commit is contained in:
38
generator.py
38
generator.py
@ -1,31 +1,39 @@
|
||||
import torch.nn as nn
|
||||
|
||||
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
|
||||
nn.BatchNorm1d(out_channels),
|
||||
nn.PReLU()
|
||||
)
|
||||
|
||||
class SISUGenerator(nn.Module):
|
||||
def __init__(self):
|
||||
super(SISUGenerator, self).__init__()
|
||||
layer = 16
|
||||
# Convolution layers with BatchNorm and Residuals
|
||||
layer = 32 # Increased base layer count
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.Conv1d(1, layer * 2, kernel_size=7, padding=3),
|
||||
nn.BatchNorm1d(layer * 2),
|
||||
nn.PReLU(),
|
||||
nn.Conv1d(layer * 2, layer * 5, kernel_size=7, padding=3),
|
||||
nn.BatchNorm1d(layer * 5),
|
||||
nn.PReLU(),
|
||||
nn.Conv1d(layer * 5, layer * 5, kernel_size=7, padding=3),
|
||||
nn.BatchNorm1d(layer * 5),
|
||||
nn.Conv1d(1, layer, kernel_size=7, padding=3),
|
||||
nn.BatchNorm1d(layer),
|
||||
nn.PReLU(),
|
||||
)
|
||||
self.conv_blocks = nn.Sequential(
|
||||
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
||||
conv_block(layer, layer*2, kernel_size=5, dilation=2), # Local Context
|
||||
conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
|
||||
conv_block(layer*2, layer*4, kernel_size=7, dilation=8), # Longer range dependencies
|
||||
conv_block(layer*4, layer*4, kernel_size=3, dilation=16), # Longer range dependencies
|
||||
conv_block(layer*4, layer*2, kernel_size=5, dilation=8), # Wider context
|
||||
conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
|
||||
conv_block(layer*2, layer, kernel_size=5, dilation=2), # Local Context
|
||||
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
||||
)
|
||||
self.final_layer = nn.Sequential(
|
||||
nn.Conv1d(layer * 5, layer * 2, kernel_size=5, padding=2),
|
||||
nn.BatchNorm1d(layer * 2),
|
||||
nn.PReLU(),
|
||||
nn.Conv1d(layer * 2, 1, kernel_size=3, padding=1),
|
||||
# nn.Tanh() # Normalize audio... if needed...
|
||||
nn.Conv1d(layer, 1, kernel_size=3, padding=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
x = self.conv1(x)
|
||||
x = self.conv_blocks(x)
|
||||
x = self.final_layer(x)
|
||||
return x + residual
|
||||
|
Reference in New Issue
Block a user