⚗️ | Experimenting with larger model architecture.

This commit is contained in:
2025-01-08 15:33:18 +02:00
parent 89f8c68986
commit f615b39ded
3 changed files with 53 additions and 36 deletions

View File

@ -1,31 +1,39 @@
import torch.nn as nn
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
return nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
nn.BatchNorm1d(out_channels),
nn.PReLU()
)
class SISUGenerator(nn.Module):
def __init__(self):
super(SISUGenerator, self).__init__()
layer = 16
# Convolution layers with BatchNorm and Residuals
layer = 32 # Increased base layer count
self.conv1 = nn.Sequential(
nn.Conv1d(1, layer * 2, kernel_size=7, padding=3),
nn.BatchNorm1d(layer * 2),
nn.PReLU(),
nn.Conv1d(layer * 2, layer * 5, kernel_size=7, padding=3),
nn.BatchNorm1d(layer * 5),
nn.PReLU(),
nn.Conv1d(layer * 5, layer * 5, kernel_size=7, padding=3),
nn.BatchNorm1d(layer * 5),
nn.Conv1d(1, layer, kernel_size=7, padding=3),
nn.BatchNorm1d(layer),
nn.PReLU(),
)
self.conv_blocks = nn.Sequential(
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
conv_block(layer, layer*2, kernel_size=5, dilation=2), # Local Context
conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
conv_block(layer*2, layer*4, kernel_size=7, dilation=8), # Longer range dependencies
conv_block(layer*4, layer*4, kernel_size=3, dilation=16), # Longer range dependencies
conv_block(layer*4, layer*2, kernel_size=5, dilation=8), # Wider context
conv_block(layer*2, layer*2, kernel_size=3, dilation=4), # Wider context
conv_block(layer*2, layer, kernel_size=5, dilation=2), # Local Context
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
)
self.final_layer = nn.Sequential(
nn.Conv1d(layer * 5, layer * 2, kernel_size=5, padding=2),
nn.BatchNorm1d(layer * 2),
nn.PReLU(),
nn.Conv1d(layer * 2, 1, kernel_size=3, padding=1),
# nn.Tanh() # Normalize audio... if needed...
nn.Conv1d(layer, 1, kernel_size=3, padding=1),
)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.conv_blocks(x)
x = self.final_layer(x)
return x + residual