🐛 | Changed training loop.

This commit is contained in:
2024-12-18 02:29:51 +02:00
parent b6eb04a799
commit eea4e565bc
3 changed files with 19 additions and 43 deletions

1
.gitignore vendored
View File

@ -164,3 +164,4 @@ cython_debug/
backup/ backup/
dataset/ dataset/
old-output/ old-output/
*.wav

Binary file not shown.

View File

@ -46,64 +46,39 @@ scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min',
# Training loop # Training loop
num_epochs = 500 num_epochs = 500
for epoch in range(num_epochs): for epoch in range(num_epochs):
latest_crap_audio = torch.empty((2,3), dtype=torch.int64) original, crap_audio = torch.empty((1,2,3)), torch.empty((1,2,3))
for high_quality, low_quality in tqdm.tqdm(train_data_loader): for low_quality, high_quality in tqdm.tqdm(train_data_loader):
# Check for NaN values in input tensors
if torch.isnan(low_quality).any() or torch.isnan(high_quality).any():
continue
high_quality = high_quality.to(device)
low_quality = low_quality.to(device) low_quality = low_quality.to(device)
high_quality = high_quality.to(device)
batch_size = low_quality.size(0) batch_size = low_quality.size(0)
# Labels
real_labels = torch.ones(batch_size, 1).to(device) real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device) fake_labels = torch.zeros(batch_size, 1).to(device)
# Train Discriminator # Train Discriminator
optimizer_d.zero_grad() optimizer_d.zero_grad()
outputs = discriminator(high_quality) real_outputs = discriminator(high_quality)
d_loss_real = criterion(outputs, real_labels) fake_audio = generator(low_quality)
d_loss_real.backward() fake_outputs = discriminator(fake_audio.detach())
d_loss_real = criterion(real_outputs, real_labels)
resampled_audio = generator(low_quality) d_loss_fake = criterion(fake_outputs, fake_labels)
d_loss = (d_loss_real + d_loss_fake) * 0.5
outputs = discriminator(resampled_audio.detach()) d_loss.backward()
d_loss_fake = criterion(outputs, fake_labels)
d_loss_fake.backward()
# Gradient clipping for discriminator
clip_value = 2.0
for param in discriminator.parameters():
if param.grad is not None:
param.grad.clamp_(-clip_value, clip_value)
optimizer_d.step() optimizer_d.step()
d_loss = d_loss_real + d_loss_fake
# Train Generator # Train Generator
optimizer_g.zero_grad() optimizer_g.zero_grad()
outputs = discriminator(resampled_audio) fake_outputs = discriminator(fake_audio)
g_loss = criterion(outputs, real_labels) g_loss = criterion(fake_outputs, real_labels)
g_loss.backward() g_loss.backward()
# Gradient clipping for generator
clip_value = 1.0
for param in generator.parameters():
if param.grad is not None:
param.grad.clamp_(-clip_value, clip_value)
optimizer_g.step() optimizer_g.step()
original = high_quality
scheduler.step(d_loss + g_loss) crap_audio = fake_audio
latest_crap_audio = resampled_audio
if epoch % 10 == 0: if epoch % 10 == 0:
print(latest_crap_audio.size()) print(crap_audio.size())
torchaudio.save(f"./epoch-{epoch}-audio.wav", latest_crap_audio[0].cpu(), 44100) torchaudio.save(f"./epoch-{epoch}-audio.wav", crap_audio[0].cpu(), 44100)
torchaudio.save(f"./epoch-{epoch}-audio-orig.wav", original[0].cpu(), 44100)
print(f'Epoch [{epoch+1}/{num_epochs}]') print(f'Epoch [{epoch+1}/{num_epochs}]')
torch.save(generator.state_dict(), "generator.pt") torch.save(generator.state_dict(), "generator.pt")