🐛 | Fixed output not being same length.

This commit is contained in:
NikkeDoy 2024-12-18 02:10:46 +02:00
parent d2e5ae9061
commit b6eb04a799

24
data.py
View File

@ -13,37 +13,33 @@ class AudioDataset(Dataset):
def __len__(self):
return len(self.input_files)
def __getitem__(self, idx):
# Load audio samples using torchaudio
high_quality_wav, sr_original = torchaudio.load(self.input_files[idx], normalize=True)
# Resample to 16000 Hz if necessary
resample_transform = torchaudio.transforms.Resample(sr_original, 16000)
low_quality_wav = resample_transform(high_quality_wav)
# Calculate target length in samples if target_duration is specified
# Calculate target length based on desired duration and 16000 Hz
if self.target_duration is not None:
target_length = int(self.target_duration * 16000) # Assuming 16000 Hz as target sample rate
target_length = int(self.target_duration * 44100)
else:
target_length = high_quality_wav.size(1)
# Calculate duration of original high quality audio
duration_original = high_quality_wav.shape[1] / sr_original
target_length = int(duration_original * 16000)
# Pad high_quality_wav and low_quality_wav to target_length
# Pad both to the calculated target length
high_quality_wav = self.pad_tensor(high_quality_wav, target_length)
low_quality_wav = self.pad_tensor(low_quality_wav, target_length)
return high_quality_wav, low_quality_wav
return low_quality_wav, high_quality_wav
def pad_tensor(self, tensor, target_length):
"""Pad tensor to target length along the time dimension (dim=1)."""
current_length = tensor.size(1)
if current_length < target_length:
# Calculate padding amount for each side
padding_amount = target_length - current_length
padding = (0, padding_amount) # (left_pad, right_pad) for 1D padding
padding = (0, padding_amount)
tensor = torch.nn.functional.pad(tensor, padding, mode=self.padding_mode, value=self.padding_value)
else:
# If tensor is longer than target, truncate it
elif current_length > target_length:
tensor = tensor[:, :target_length]
return tensor