⚗️ | Added some stupid ways for training + some makeup
This commit is contained in:
246
training.py
246
training.py
@@ -4,25 +4,20 @@ import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torchaudio.transforms as T
|
||||
import tqdm
|
||||
from torch.amp import GradScaler, autocast
|
||||
from torch.utils.data import DataLoader
|
||||
from accelerate import Accelerator
|
||||
from torch.utils.data import DataLoader, DistributedSampler
|
||||
|
||||
import training_utils
|
||||
from data import AudioDataset
|
||||
from discriminator import SISUDiscriminator
|
||||
from generator import SISUGenerator
|
||||
from training_utils import discriminator_train, generator_train
|
||||
from utils.TrainingTools import discriminator_train, generator_train
|
||||
|
||||
# ---------------------------
|
||||
# Argument parsing
|
||||
# ---------------------------
|
||||
parser = argparse.ArgumentParser(description="Training script (safer defaults)")
|
||||
parser.add_argument("--resume", action="store_true", help="Resume training")
|
||||
parser.add_argument(
|
||||
"--device", type=str, default="cuda", help="Device (cuda, cpu, mps)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs", type=int, default=5000, help="Number of training epochs"
|
||||
)
|
||||
@@ -35,86 +30,54 @@ parser.add_argument(
|
||||
args = parser.parse_args()
|
||||
|
||||
# ---------------------------
|
||||
# Device setup
|
||||
# Init accelerator
|
||||
# ---------------------------
|
||||
# Use requested device only if available
|
||||
device = torch.device(
|
||||
args.device if (args.device != "cuda" or torch.cuda.is_available()) else "cpu"
|
||||
)
|
||||
print(f"Using device: {device}")
|
||||
# sensible performance flags
|
||||
if device.type == "cuda":
|
||||
torch.backends.cudnn.benchmark = True
|
||||
# optional: torch.set_float32_matmul_precision("high")
|
||||
debug = args.debug
|
||||
|
||||
# ---------------------------
|
||||
# Audio transforms
|
||||
# ---------------------------
|
||||
sample_rate = 44100
|
||||
n_fft = 1024
|
||||
win_length = n_fft
|
||||
hop_length = n_fft // 4
|
||||
n_mels = 96
|
||||
# n_mfcc = 13
|
||||
|
||||
# mfcc_transform = T.MFCC(
|
||||
# sample_rate=sample_rate,
|
||||
# n_mfcc=n_mfcc,
|
||||
# melkwargs=dict(
|
||||
# n_fft=n_fft,
|
||||
# hop_length=hop_length,
|
||||
# win_length=win_length,
|
||||
# n_mels=n_mels,
|
||||
# power=1.0,
|
||||
# ),
|
||||
# ).to(device)
|
||||
|
||||
mel_transform = T.MelSpectrogram(
|
||||
sample_rate=sample_rate,
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
win_length=win_length,
|
||||
n_mels=n_mels,
|
||||
power=1.0,
|
||||
).to(device)
|
||||
|
||||
stft_transform = T.Spectrogram(
|
||||
n_fft=n_fft, win_length=win_length, hop_length=hop_length
|
||||
).to(device)
|
||||
|
||||
# training_utils.init(mel_transform, stft_transform, mfcc_transform)
|
||||
training_utils.init(mel_transform, stft_transform)
|
||||
|
||||
# ---------------------------
|
||||
# Dataset / DataLoader
|
||||
# ---------------------------
|
||||
dataset_dir = "./dataset/good"
|
||||
dataset = AudioDataset(dataset_dir)
|
||||
|
||||
train_loader = DataLoader(
|
||||
dataset,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=True,
|
||||
num_workers=args.num_workers,
|
||||
pin_memory=True,
|
||||
persistent_workers=True,
|
||||
)
|
||||
accelerator = Accelerator(mixed_precision="bf16")
|
||||
|
||||
# ---------------------------
|
||||
# Models
|
||||
# ---------------------------
|
||||
generator = SISUGenerator().to(device)
|
||||
discriminator = SISUDiscriminator().to(device)
|
||||
generator = SISUGenerator()
|
||||
discriminator = SISUDiscriminator()
|
||||
|
||||
accelerator.print("🔨 | Compiling models...")
|
||||
|
||||
generator = torch.compile(generator)
|
||||
discriminator = torch.compile(discriminator)
|
||||
|
||||
accelerator.print("✅ | Compiling done!")
|
||||
|
||||
# ---------------------------
|
||||
# Dataset / DataLoader
|
||||
# ---------------------------
|
||||
accelerator.print("📊 | Fetching dataset...")
|
||||
dataset = AudioDataset("./dataset")
|
||||
|
||||
sampler = DistributedSampler(dataset) if accelerator.num_processes > 1 else None
|
||||
pin_memory = torch.cuda.is_available() and not args.no_pin_memory
|
||||
|
||||
train_loader = DataLoader(
|
||||
dataset,
|
||||
sampler=sampler,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=(sampler is None),
|
||||
num_workers=args.num_workers,
|
||||
pin_memory=pin_memory,
|
||||
persistent_workers=pin_memory,
|
||||
)
|
||||
|
||||
if not train_loader or not train_loader.batch_size or train_loader.batch_size == 0:
|
||||
accelerator.print("🪹 | There is no data to train with! Exiting...")
|
||||
exit()
|
||||
|
||||
loader_batch_size = train_loader.batch_size
|
||||
|
||||
accelerator.print("✅ | Dataset fetched!")
|
||||
|
||||
# ---------------------------
|
||||
# Losses / Optimizers / Scalers
|
||||
# ---------------------------
|
||||
criterion_g = nn.BCEWithLogitsLoss()
|
||||
criterion_d = nn.BCEWithLogitsLoss()
|
||||
|
||||
optimizer_g = optim.AdamW(
|
||||
generator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
|
||||
@@ -123,9 +86,6 @@ optimizer_d = optim.AdamW(
|
||||
discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
|
||||
)
|
||||
|
||||
# Use modern GradScaler signature; choose device_type based on runtime device.
|
||||
scaler = GradScaler(device=device)
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||||
optimizer_g, mode="min", factor=0.5, patience=5
|
||||
)
|
||||
@@ -133,6 +93,17 @@ scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||||
optimizer_d, mode="min", factor=0.5, patience=5
|
||||
)
|
||||
|
||||
criterion_g = nn.BCEWithLogitsLoss()
|
||||
criterion_d = nn.MSELoss()
|
||||
|
||||
# ---------------------------
|
||||
# Prepare accelerator
|
||||
# ---------------------------
|
||||
|
||||
generator, discriminator, optimizer_g, optimizer_d, train_loader = accelerator.prepare(
|
||||
generator, discriminator, optimizer_g, optimizer_d, train_loader
|
||||
)
|
||||
|
||||
# ---------------------------
|
||||
# Checkpoint helpers
|
||||
# ---------------------------
|
||||
@@ -141,44 +112,45 @@ os.makedirs(models_dir, exist_ok=True)
|
||||
|
||||
|
||||
def save_ckpt(path, epoch):
|
||||
torch.save(
|
||||
{
|
||||
"epoch": epoch,
|
||||
"G": generator.state_dict(),
|
||||
"D": discriminator.state_dict(),
|
||||
"optG": optimizer_g.state_dict(),
|
||||
"optD": optimizer_d.state_dict(),
|
||||
"scaler": scaler.state_dict(),
|
||||
"schedG": scheduler_g.state_dict(),
|
||||
"schedD": scheduler_d.state_dict(),
|
||||
},
|
||||
path,
|
||||
)
|
||||
accelerator.wait_for_everyone()
|
||||
if accelerator.is_main_process:
|
||||
accelerator.save(
|
||||
{
|
||||
"epoch": epoch,
|
||||
"G": accelerator.unwrap_model(generator).state_dict(),
|
||||
"D": accelerator.unwrap_model(discriminator).state_dict(),
|
||||
"optG": optimizer_g.state_dict(),
|
||||
"optD": optimizer_d.state_dict(),
|
||||
"schedG": scheduler_g.state_dict(),
|
||||
"schedD": scheduler_d.state_dict(),
|
||||
},
|
||||
path,
|
||||
)
|
||||
|
||||
|
||||
start_epoch = 0
|
||||
if args.resume:
|
||||
ckpt = torch.load(os.path.join(models_dir, "last.pt"), map_location=device)
|
||||
generator.load_state_dict(ckpt["G"])
|
||||
discriminator.load_state_dict(ckpt["D"])
|
||||
ckpt_path = os.path.join(models_dir, "last.pt")
|
||||
ckpt = torch.load(ckpt_path)
|
||||
|
||||
accelerator.unwrap_model(generator).load_state_dict(ckpt["G"])
|
||||
accelerator.unwrap_model(discriminator).load_state_dict(ckpt["D"])
|
||||
optimizer_g.load_state_dict(ckpt["optG"])
|
||||
optimizer_d.load_state_dict(ckpt["optD"])
|
||||
scaler.load_state_dict(ckpt["scaler"])
|
||||
scheduler_g.load_state_dict(ckpt["schedG"])
|
||||
scheduler_d.load_state_dict(ckpt["schedD"])
|
||||
|
||||
start_epoch = ckpt.get("epoch", 1)
|
||||
accelerator.print(f"🔁 | Resumed from epoch {start_epoch}!")
|
||||
|
||||
# ---------------------------
|
||||
# Training loop (safer)
|
||||
# ---------------------------
|
||||
real_buf = torch.full(
|
||||
(loader_batch_size, 1), 1, device=accelerator.device, dtype=torch.float32
|
||||
)
|
||||
fake_buf = torch.zeros(
|
||||
(loader_batch_size, 1), device=accelerator.device, dtype=torch.float32
|
||||
)
|
||||
|
||||
if not train_loader or not train_loader.batch_size:
|
||||
print("There is no data to train with! Exiting...")
|
||||
exit()
|
||||
|
||||
max_batch = max(1, train_loader.batch_size)
|
||||
real_buf = torch.full((max_batch, 1), 0.9, device=device) # label smoothing
|
||||
fake_buf = torch.zeros(max_batch, 1, device=device)
|
||||
accelerator.print("🏋️ | Started training...")
|
||||
|
||||
try:
|
||||
for epoch in range(start_epoch, args.epochs):
|
||||
@@ -193,15 +165,12 @@ try:
|
||||
) in enumerate(tqdm.tqdm(train_loader, desc=f"Epoch {epoch}")):
|
||||
batch_size = high_quality.size(0)
|
||||
|
||||
high_quality = high_quality.to(device, non_blocking=True)
|
||||
low_quality = low_quality.to(device, non_blocking=True)
|
||||
|
||||
real_labels = real_buf[:batch_size]
|
||||
fake_labels = fake_buf[:batch_size]
|
||||
real_labels = real_buf[:batch_size].to(accelerator.device)
|
||||
fake_labels = fake_buf[:batch_size].to(accelerator.device)
|
||||
|
||||
# --- Discriminator ---
|
||||
optimizer_d.zero_grad(set_to_none=True)
|
||||
with autocast(device_type=device.type):
|
||||
with accelerator.autocast():
|
||||
d_loss = discriminator_train(
|
||||
high_quality,
|
||||
low_quality,
|
||||
@@ -212,15 +181,14 @@ try:
|
||||
criterion_d,
|
||||
)
|
||||
|
||||
scaler.scale(d_loss).backward()
|
||||
scaler.unscale_(optimizer_d)
|
||||
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), 1.0)
|
||||
scaler.step(optimizer_d)
|
||||
accelerator.backward(d_loss)
|
||||
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), 1)
|
||||
optimizer_d.step()
|
||||
|
||||
# --- Generator ---
|
||||
optimizer_g.zero_grad(set_to_none=True)
|
||||
with autocast(device_type=device.type):
|
||||
g_out, g_total, g_adv = generator_train(
|
||||
with accelerator.autocast():
|
||||
g_total, g_adv = generator_train(
|
||||
low_quality,
|
||||
high_quality,
|
||||
real_labels,
|
||||
@@ -229,20 +197,32 @@ try:
|
||||
criterion_d,
|
||||
)
|
||||
|
||||
scaler.scale(g_total).backward()
|
||||
scaler.unscale_(optimizer_g)
|
||||
torch.nn.utils.clip_grad_norm_(generator.parameters(), 1.0)
|
||||
scaler.step(optimizer_g)
|
||||
accelerator.backward(g_total)
|
||||
torch.nn.utils.clip_grad_norm_(generator.parameters(), 1)
|
||||
optimizer_g.step()
|
||||
|
||||
scaler.update()
|
||||
d_val = accelerator.gather(d_loss.detach()).mean()
|
||||
g_val = accelerator.gather(g_total.detach()).mean()
|
||||
|
||||
if torch.isfinite(d_val):
|
||||
running_d += d_val.item()
|
||||
else:
|
||||
accelerator.print(
|
||||
f"🫥 | NaN in discriminator loss at step {i}, skipping update."
|
||||
)
|
||||
|
||||
if torch.isfinite(g_val):
|
||||
running_g += g_val.item()
|
||||
else:
|
||||
accelerator.print(
|
||||
f"🫥 | NaN in generator loss at step {i}, skipping update."
|
||||
)
|
||||
|
||||
running_d += float(d_loss.detach().cpu().item())
|
||||
running_g += float(g_total.detach().cpu().item())
|
||||
steps += 1
|
||||
|
||||
# epoch averages & schedulers
|
||||
if steps == 0:
|
||||
print("No steps in epoch (empty dataloader?). Exiting.")
|
||||
accelerator.print("🪹 | No steps in epoch (empty dataloader?). Exiting.")
|
||||
break
|
||||
|
||||
mean_d = running_d / steps
|
||||
@@ -252,22 +232,14 @@ try:
|
||||
scheduler_g.step(mean_g)
|
||||
|
||||
save_ckpt(os.path.join(models_dir, "last.pt"), epoch)
|
||||
print(f"Epoch {epoch} done | D {mean_d:.4f} | G {mean_g:.4f}")
|
||||
accelerator.print(f"🤝 | Epoch {epoch} done | D {mean_d:.4f} | G {mean_g:.4f}")
|
||||
|
||||
except Exception:
|
||||
try:
|
||||
save_ckpt(os.path.join(models_dir, "crash_last.pt"), epoch)
|
||||
print(f"Saved crash checkpoint for epoch {epoch}")
|
||||
accelerator.print(f"💾 | Saved crash checkpoint for epoch {epoch}")
|
||||
except Exception as e:
|
||||
print("Failed saving crash checkpoint:", e)
|
||||
accelerator.print("😬 | Failed saving crash checkpoint:", e)
|
||||
raise
|
||||
|
||||
try:
|
||||
torch.save(generator.state_dict(), os.path.join(models_dir, "final_generator.pt"))
|
||||
torch.save(
|
||||
discriminator.state_dict(), os.path.join(models_dir, "final_discriminator.pt")
|
||||
)
|
||||
except Exception as e:
|
||||
print("Failed to save final states:", e)
|
||||
|
||||
print("Training finished.")
|
||||
accelerator.print("🏁 | Training finished.")
|
||||
|
Reference in New Issue
Block a user