✨ | Made training bit... spicier.
This commit is contained in:
62
utils/MultiResolutionSTFTLoss.py
Normal file
62
utils/MultiResolutionSTFTLoss.py
Normal file
@@ -0,0 +1,62 @@
|
||||
from typing import Dict, List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio.transforms as T
|
||||
|
||||
|
||||
class MultiResolutionSTFTLoss(nn.Module):
|
||||
"""
|
||||
Computes a loss based on multiple STFT resolutions, including both
|
||||
spectral convergence and log STFT magnitude components.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fft_sizes: List[int] = [1024, 2048, 512],
|
||||
hop_sizes: List[int] = [120, 240, 50],
|
||||
win_lengths: List[int] = [600, 1200, 240],
|
||||
eps: float = 1e-7,
|
||||
):
|
||||
super().__init__()
|
||||
self.stft_transforms = nn.ModuleList(
|
||||
[
|
||||
T.Spectrogram(
|
||||
n_fft=n_fft, win_length=win_len, hop_length=hop_len, power=None
|
||||
)
|
||||
for n_fft, hop_len, win_len in zip(fft_sizes, hop_sizes, win_lengths)
|
||||
]
|
||||
)
|
||||
self.eps = eps
|
||||
|
||||
def forward(
|
||||
self, y_true: torch.Tensor, y_pred: torch.Tensor
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
sc_loss = 0.0 # Spectral Convergence Loss
|
||||
mag_loss = 0.0 # Log STFT Magnitude Loss
|
||||
|
||||
for stft in self.stft_transforms:
|
||||
stft.to(y_pred.device) # Ensure transform is on the correct device
|
||||
|
||||
# Get complex STFTs
|
||||
stft_true = stft(y_true)
|
||||
stft_pred = stft(y_pred)
|
||||
|
||||
# Get magnitudes
|
||||
stft_mag_true = torch.abs(stft_true)
|
||||
stft_mag_pred = torch.abs(stft_pred)
|
||||
|
||||
# --- Spectral Convergence Loss ---
|
||||
# || |S_true| - |S_pred| ||_F / || |S_true| ||_F
|
||||
norm_true = torch.linalg.norm(stft_mag_true, dim=(-2, -1))
|
||||
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, dim=(-2, -1))
|
||||
sc_loss += torch.mean(norm_diff / (norm_true + self.eps))
|
||||
|
||||
# --- Log STFT Magnitude Loss ---
|
||||
mag_loss += F.l1_loss(
|
||||
torch.log(stft_mag_pred + self.eps), torch.log(stft_mag_true + self.eps)
|
||||
)
|
||||
|
||||
total_loss = sc_loss + mag_loss
|
||||
return {"total": total_loss, "sc": sc_loss, "mag": mag_loss}
|
0
utils/__init__.py
Normal file
0
utils/__init__.py
Normal file
Reference in New Issue
Block a user