| Made training bit... spicier.

This commit is contained in:
2025-09-10 19:52:53 +03:00
parent ff38cefdd3
commit 0bc8fc2792
8 changed files with 581 additions and 303 deletions

View File

@@ -1,65 +1,74 @@
import argparse
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchaudio
import torchaudio.transforms as T
import tqdm
import argparse
import math
import os
from torch.utils.data import random_split
from torch.amp import GradScaler, autocast
from torch.utils.data import DataLoader
import AudioUtils
import training_utils
from data import AudioDataset
from generator import SISUGenerator
from discriminator import SISUDiscriminator
from generator import SISUGenerator
from training_utils import discriminator_train, generator_train
import file_utils as Data
import torchaudio.transforms as T
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--generator", type=str, default=None,
help="Path to the generator model file")
parser.add_argument("--discriminator", type=str, default=None,
help="Path to the discriminator model file")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
parser.add_argument("--debug", action="store_true", help="Print debug logs")
parser.add_argument("--continue_training", action="store_true", help="Continue training using temp_generator and temp_discriminator models")
# ---------------------------
# Argument parsing
# ---------------------------
parser = argparse.ArgumentParser(description="Training script (safer defaults)")
parser.add_argument("--resume", action="store_true", help="Resume training")
parser.add_argument(
"--device", type=str, default="cuda", help="Device (cuda, cpu, mps)"
)
parser.add_argument(
"--epochs", type=int, default=5000, help="Number of training epochs"
)
parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
parser.add_argument("--num_workers", type=int, default=2, help="DataLoader num_workers")
parser.add_argument("--debug", action="store_true", help="Print debug logs")
parser.add_argument(
"--no_pin_memory", action="store_true", help="Disable pin_memory even on CUDA"
)
args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
# ---------------------------
# Device setup
# ---------------------------
# Use requested device only if available
device = torch.device(
args.device if (args.device != "cuda" or torch.cuda.is_available()) else "cpu"
)
print(f"Using device: {device}")
# sensible performance flags
if device.type == "cuda":
torch.backends.cudnn.benchmark = True
# optional: torch.set_float32_matmul_precision("high")
debug = args.debug
# Parameters
# ---------------------------
# Audio transforms
# ---------------------------
sample_rate = 44100
n_fft = 1024
win_length = n_fft
hop_length = n_fft // 4
n_mels = 40
n_mfcc = 13
n_mels = 96
# n_mfcc = 13
mfcc_transform = T.MFCC(
sample_rate=sample_rate,
n_mfcc=n_mfcc,
melkwargs={
'n_fft': n_fft,
'hop_length': hop_length,
'win_length': win_length,
'n_mels': n_mels,
'power': 1.0,
}
).to(device)
# mfcc_transform = T.MFCC(
# sample_rate=sample_rate,
# n_mfcc=n_mfcc,
# melkwargs=dict(
# n_fft=n_fft,
# hop_length=hop_length,
# win_length=win_length,
# n_mels=n_mels,
# power=1.0,
# ),
# ).to(device)
mel_transform = T.MelSpectrogram(
sample_rate=sample_rate,
@@ -67,138 +76,198 @@ mel_transform = T.MelSpectrogram(
hop_length=hop_length,
win_length=win_length,
n_mels=n_mels,
power=1.0 # Magnitude Mel
power=1.0,
).to(device)
stft_transform = T.Spectrogram(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length
n_fft=n_fft, win_length=win_length, hop_length=hop_length
).to(device)
debug = args.debug
# Initialize dataset and dataloader
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, device)
models_dir = "./models"
os.makedirs(models_dir, exist_ok=True)
audio_output_dir = "./output"
os.makedirs(audio_output_dir, exist_ok=True)
# training_utils.init(mel_transform, stft_transform, mfcc_transform)
training_utils.init(mel_transform, stft_transform)
# ========= SINGLE =========
# ---------------------------
# Dataset / DataLoader
# ---------------------------
dataset_dir = "./dataset/good"
dataset = AudioDataset(dataset_dir)
train_data_loader = DataLoader(dataset, batch_size=2048, shuffle=True, num_workers=24)
train_loader = DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
persistent_workers=True,
)
# ---------------------------
# Models
# ---------------------------
generator = SISUGenerator().to(device)
discriminator = SISUDiscriminator().to(device)
# ========= MODELS =========
generator = torch.compile(generator)
discriminator = torch.compile(discriminator)
generator = SISUGenerator()
discriminator = SISUDiscriminator()
epoch: int = args.epoch
if args.continue_training:
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
elif args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
else:
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_discriminator.pt", map_location=device, weights_only=True))
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
epoch = epoch_from_file["epoch"] + 1
generator = generator.to(device)
discriminator = discriminator.to(device)
# Loss
# ---------------------------
# Losses / Optimizers / Scalers
# ---------------------------
criterion_g = nn.BCEWithLogitsLoss()
criterion_d = nn.BCEWithLogitsLoss()
# Optimizers
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
optimizer_g = optim.AdamW(
generator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
)
optimizer_d = optim.AdamW(
discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
)
# Scheduler
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
# Use modern GradScaler signature; choose device_type based on runtime device.
scaler = GradScaler(device=device)
def start_training():
generator_epochs = 5000
for generator_epoch in range(generator_epochs):
high_quality_audio = ([torch.empty((1))], 1)
low_quality_audio = ([torch.empty((1))], 1)
ai_enhanced_audio = ([torch.empty((1))], 1)
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_g, mode="min", factor=0.5, patience=5
)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_d, mode="min", factor=0.5, patience=5
)
times_correct = 0
# ========= TRAINING =========
for training_data in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
## Data structure:
# [[[float..., float..., float...], [float..., float..., float...]], [original_sample_rate, mangled_sample_rate]]
# ========= LABELS =========
good_quality_data = training_data[0][0].to(device)
bad_quality_data = training_data[0][1].to(device)
original_sample_rate = training_data[1][0]
mangled_sample_rate = training_data[1][1]
batch_size = good_quality_data.size(0)
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
high_quality_audio = (good_quality_data, original_sample_rate)
low_quality_audio = (bad_quality_data, mangled_sample_rate)
# ========= DISCRIMINATOR =========
discriminator.train()
d_loss = discriminator_train(
good_quality_data,
bad_quality_data,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
# ========= GENERATOR =========
generator.train()
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
bad_quality_data,
good_quality_data,
real_labels,
generator,
discriminator,
criterion_d,
optimizer_g,
device,
mel_transform,
stft_transform,
mfcc_transform
)
if debug:
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
scheduler_d.step(d_loss.detach())
scheduler_g.step(adversarial_loss.detach())
# ========= SAVE LATEST AUDIO =========
high_quality_audio = (good_quality_data, original_sample_rate)
low_quality_audio = (bad_quality_data, original_sample_rate)
ai_enhanced_audio = (generator_output, original_sample_rate)
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
new_epoch = generator_epoch+epoch
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
# ---------------------------
# Checkpoint helpers
# ---------------------------
models_dir = "./models"
os.makedirs(models_dir, exist_ok=True)
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
torch.save(generator, "models/epoch-5000-generator.pt")
print("Training complete!")
def save_ckpt(path, epoch):
torch.save(
{
"epoch": epoch,
"G": generator.state_dict(),
"D": discriminator.state_dict(),
"optG": optimizer_g.state_dict(),
"optD": optimizer_d.state_dict(),
"scaler": scaler.state_dict(),
"schedG": scheduler_g.state_dict(),
"schedD": scheduler_d.state_dict(),
},
path,
)
start_training()
start_epoch = 0
if args.resume:
ckpt = torch.load(os.path.join(models_dir, "last.pt"), map_location=device)
generator.load_state_dict(ckpt["G"])
discriminator.load_state_dict(ckpt["D"])
optimizer_g.load_state_dict(ckpt["optG"])
optimizer_d.load_state_dict(ckpt["optD"])
scaler.load_state_dict(ckpt["scaler"])
scheduler_g.load_state_dict(ckpt["schedG"])
scheduler_d.load_state_dict(ckpt["schedD"])
start_epoch = ckpt.get("epoch", 1)
# ---------------------------
# Training loop (safer)
# ---------------------------
if not train_loader or not train_loader.batch_size:
print("There is no data to train with! Exiting...")
exit()
max_batch = max(1, train_loader.batch_size)
real_buf = torch.full((max_batch, 1), 0.9, device=device) # label smoothing
fake_buf = torch.zeros(max_batch, 1, device=device)
try:
for epoch in range(start_epoch, args.epochs):
generator.train()
discriminator.train()
running_d, running_g, steps = 0.0, 0.0, 0
for i, (
(high_quality, low_quality),
(high_sample_rate, low_sample_rate),
) in enumerate(tqdm.tqdm(train_loader, desc=f"Epoch {epoch}")):
batch_size = high_quality.size(0)
high_quality = high_quality.to(device, non_blocking=True)
low_quality = low_quality.to(device, non_blocking=True)
real_labels = real_buf[:batch_size]
fake_labels = fake_buf[:batch_size]
# --- Discriminator ---
optimizer_d.zero_grad(set_to_none=True)
with autocast(device_type=device.type):
d_loss = discriminator_train(
high_quality,
low_quality,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
)
scaler.scale(d_loss).backward()
scaler.unscale_(optimizer_d)
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), 1.0)
scaler.step(optimizer_d)
# --- Generator ---
optimizer_g.zero_grad(set_to_none=True)
with autocast(device_type=device.type):
g_out, g_total, g_adv = generator_train(
low_quality,
high_quality,
real_labels,
generator,
discriminator,
criterion_d,
)
scaler.scale(g_total).backward()
scaler.unscale_(optimizer_g)
torch.nn.utils.clip_grad_norm_(generator.parameters(), 1.0)
scaler.step(optimizer_g)
scaler.update()
running_d += float(d_loss.detach().cpu().item())
running_g += float(g_total.detach().cpu().item())
steps += 1
# epoch averages & schedulers
if steps == 0:
print("No steps in epoch (empty dataloader?). Exiting.")
break
mean_d = running_d / steps
mean_g = running_g / steps
scheduler_d.step(mean_d)
scheduler_g.step(mean_g)
save_ckpt(os.path.join(models_dir, "last.pt"), epoch)
print(f"Epoch {epoch} done | D {mean_d:.4f} | G {mean_g:.4f}")
except Exception:
try:
save_ckpt(os.path.join(models_dir, "crash_last.pt"), epoch)
print(f"Saved crash checkpoint for epoch {epoch}")
except Exception as e:
print("Failed saving crash checkpoint:", e)
raise
try:
torch.save(generator.state_dict(), os.path.join(models_dir, "final_generator.pt"))
torch.save(
discriminator.state_dict(), os.path.join(models_dir, "final_discriminator.pt")
)
except Exception as e:
print("Failed to save final states:", e)
print("Training finished.")