✨ | Made training bit... spicier.
This commit is contained in:
@@ -1,8 +1,16 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.utils as utils
|
||||
|
||||
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True):
|
||||
|
||||
def discriminator_block(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
):
|
||||
padding = (kernel_size // 2) * dilation
|
||||
conv_layer = nn.Conv1d(
|
||||
in_channels,
|
||||
@@ -10,7 +18,7 @@ def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dila
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
dilation=dilation,
|
||||
padding=padding
|
||||
padding=padding,
|
||||
)
|
||||
|
||||
if spectral_norm:
|
||||
@@ -24,6 +32,7 @@ def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dila
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super(AttentionBlock, self).__init__()
|
||||
@@ -31,27 +40,86 @@ class AttentionBlock(nn.Module):
|
||||
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||
nn.Sigmoid()
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
attention_weights = self.attention(x)
|
||||
return x * attention_weights
|
||||
|
||||
|
||||
class SISUDiscriminator(nn.Module):
|
||||
def __init__(self, base_channels=16):
|
||||
super(SISUDiscriminator, self).__init__()
|
||||
layers = base_channels
|
||||
self.model = nn.Sequential(
|
||||
discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False),
|
||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(
|
||||
1,
|
||||
layers,
|
||||
kernel_size=7,
|
||||
stride=1,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=False,
|
||||
),
|
||||
discriminator_block(
|
||||
layers,
|
||||
layers * 2,
|
||||
kernel_size=5,
|
||||
stride=2,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
discriminator_block(
|
||||
layers * 2,
|
||||
layers * 4,
|
||||
kernel_size=5,
|
||||
stride=1,
|
||||
dilation=2,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
AttentionBlock(layers * 4),
|
||||
discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False)
|
||||
discriminator_block(
|
||||
layers * 4,
|
||||
layers * 8,
|
||||
kernel_size=5,
|
||||
stride=1,
|
||||
dilation=4,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
discriminator_block(
|
||||
layers * 8,
|
||||
layers * 4,
|
||||
kernel_size=5,
|
||||
stride=2,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
discriminator_block(
|
||||
layers * 4,
|
||||
layers * 2,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
discriminator_block(
|
||||
layers * 2,
|
||||
layers,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
),
|
||||
discriminator_block(
|
||||
layers,
|
||||
1,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
spectral_norm=False,
|
||||
use_instance_norm=False,
|
||||
),
|
||||
)
|
||||
|
||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||
|
Reference in New Issue
Block a user