✨ | Use SDXL from rupeshs instead
This commit is contained in:
58
main.py
58
main.py
@ -1,33 +1,30 @@
|
||||
from flask import Flask, request, jsonify
|
||||
from diffusers import DDPMScheduler, DiffusionPipeline
|
||||
import torch
|
||||
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionXLPipeline
|
||||
import base64
|
||||
from io import BytesIO
|
||||
from PIL import Image
|
||||
import os
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="scheduler")
|
||||
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base", scheduler=scheduler)
|
||||
# Define paths for OpenVINO IR models
|
||||
OV_MODEL_DIR = "echarlaix/stable-diffusion-2-1-openvino" # New directory for the LCM model
|
||||
|
||||
# --- Model Loading ---
|
||||
pipe = None
|
||||
|
||||
print("Loading UNet weights...")
|
||||
ckpt_path = './models/model.bin'
|
||||
try:
|
||||
unet_state_dict = torch.load(ckpt_path)
|
||||
pipe.unet.load_state_dict(unet_state_dict)
|
||||
if torch.cuda.is_available():
|
||||
pipe = pipe.to("cuda")
|
||||
pipe.to(torch.float16)
|
||||
print("UNet weights loaded successfully and model moved to CUDA.")
|
||||
else:
|
||||
print("CUDA is not available. Running on CPU (will be slow).")
|
||||
pipe = pipe.to("cpu")
|
||||
pipe.to(torch.float32)
|
||||
except FileNotFoundError:
|
||||
print(f"Error: Model not found at {ckpt_path}. Please ensure the file exists.")
|
||||
exit()
|
||||
pipe = OVStableDiffusionXLPipeline.from_pretrained(
|
||||
"rupeshs/hyper-sd-sdxl-1-step-openvino-int8",
|
||||
ov_config={"CACHE_DIR": ""},
|
||||
)
|
||||
|
||||
print("Compiling OpenVINO pipeline...")
|
||||
pipe.compile() # Compile the pipeline for the target device (CPU by default)
|
||||
print("OpenVINO compiled successfully.")
|
||||
|
||||
except Exception as e:
|
||||
print(f"An error occurred while loading UNet weights: {e}")
|
||||
print(f"An error occurred during OpenVINO LCM model loading or conversion: {e}")
|
||||
exit()
|
||||
|
||||
@app.route('/api/generate', methods=['POST'])
|
||||
@ -36,23 +33,28 @@ def generate_image():
|
||||
if not prompt:
|
||||
return jsonify({"error": "Prompt is required in the request body."}), 400
|
||||
|
||||
print(f"Generating image for prompt: '{prompt}'...")
|
||||
print(f"Generating image for prompt: '{prompt}' using OpenVINO LCM...")
|
||||
try:
|
||||
image = pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[999]).images[0]
|
||||
# Crucially, set num_inference_steps=1 for 1-step generation with LCMs
|
||||
# You might even omit guidance_scale for some LCMs, or use a very low value.
|
||||
image = pipe(
|
||||
prompt=prompt,
|
||||
width=768,
|
||||
height=768,
|
||||
num_inference_steps=1,
|
||||
guidance_scale=1.0,
|
||||
).images[0]
|
||||
image = image.resize((128, 128), Image.LANCZOS)
|
||||
|
||||
# Convert image to base64
|
||||
buffered = BytesIO()
|
||||
image.save(buffered, format="JPEG") # You can choose JPEG for smaller size, but PNG is lossless
|
||||
image.save(buffered, format="PNG")
|
||||
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
|
||||
return jsonify({"image": img_str})
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error during image generation: {e}")
|
||||
print(f"Error during image generation with OpenVINO LCM: {e}")
|
||||
return jsonify({"error": "An error occurred during image generation."}), 500
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Make sure to run this with 'python app.py'
|
||||
# It will be accessible at http://127.0.0.1:5000/
|
||||
app.run(host='127.0.0.1', port=5000, debug=True) # debug=True is good for development
|
||||
app.run(host='127.0.0.1', port=5000, debug=True)
|
||||
|
@ -1,39 +1,107 @@
|
||||
about-time==4.2.1
|
||||
accelerate==1.8.1
|
||||
aiohappyeyeballs==2.6.1
|
||||
aiohttp==3.12.13
|
||||
aiosignal==1.4.0
|
||||
alive-progress==3.2.0
|
||||
attrs==25.3.0
|
||||
autograd==1.8.0
|
||||
blinker==1.9.0
|
||||
certifi==2025.6.15
|
||||
charset-normalizer==3.4.2
|
||||
click==8.2.1
|
||||
cma==4.2.0
|
||||
contourpy==1.3.2
|
||||
cycler==0.12.1
|
||||
datasets==3.6.0
|
||||
Deprecated==1.2.18
|
||||
diffusers==0.34.0
|
||||
dill==0.3.8
|
||||
filelock==3.18.0
|
||||
Flask==3.1.1
|
||||
fsspec==2025.5.1
|
||||
fonttools==4.58.5
|
||||
frozenlist==1.7.0
|
||||
fsspec==2025.3.0
|
||||
grapheme==0.6.0
|
||||
hf-xet==1.1.5
|
||||
huggingface-hub==0.33.2
|
||||
idna==3.10
|
||||
importlib_metadata==8.7.0
|
||||
itsdangerous==2.2.0
|
||||
Jinja2==3.1.6
|
||||
MarkupSafe==2.1.5
|
||||
joblib==1.5.1
|
||||
jsonschema==4.24.0
|
||||
jsonschema-specifications==2025.4.1
|
||||
kiwisolver==1.4.8
|
||||
markdown-it-py==3.0.0
|
||||
MarkupSafe==3.0.2
|
||||
matplotlib==3.10.3
|
||||
mdurl==0.1.2
|
||||
mpmath==1.3.0
|
||||
networkx==3.5
|
||||
numpy==2.3.1
|
||||
multidict==6.6.3
|
||||
multiprocess==0.70.16
|
||||
natsort==8.4.0
|
||||
networkx==3.4.2
|
||||
ninja==1.11.1.4
|
||||
nncf==2.17.0
|
||||
numpy==2.2.6
|
||||
nvidia-cublas-cu12==12.6.4.1
|
||||
nvidia-cuda-cupti-cu12==12.6.80
|
||||
nvidia-cuda-nvrtc-cu12==12.6.77
|
||||
nvidia-cuda-runtime-cu12==12.6.77
|
||||
nvidia-cudnn-cu12==9.5.1.17
|
||||
nvidia-cufft-cu12==11.3.0.4
|
||||
nvidia-cufile-cu12==1.11.1.6
|
||||
nvidia-curand-cu12==10.3.7.77
|
||||
nvidia-cusolver-cu12==11.7.1.2
|
||||
nvidia-cusparse-cu12==12.5.4.2
|
||||
nvidia-cusparselt-cu12==0.6.3
|
||||
nvidia-nccl-cu12==2.26.2
|
||||
nvidia-nvjitlink-cu12==12.6.85
|
||||
nvidia-nvtx-cu12==12.6.77
|
||||
onnx==1.18.0
|
||||
openvino==2025.2.0
|
||||
openvino-telemetry==2025.2.0
|
||||
openvino-tokenizers==2025.2.0.1
|
||||
optimum==1.26.1
|
||||
optimum-intel==1.24.0
|
||||
packaging==25.0
|
||||
pillow==11.2.1
|
||||
pandas==2.2.3
|
||||
pillow==11.3.0
|
||||
propcache==0.3.2
|
||||
protobuf==6.31.1
|
||||
psutil==7.0.0
|
||||
pytorch-triton-rocm==3.3.1+gitc8757738
|
||||
pyarrow==20.0.0
|
||||
pydot==3.0.4
|
||||
Pygments==2.19.2
|
||||
pymoo==0.6.1.5
|
||||
pyparsing==3.2.3
|
||||
python-dateutil==2.9.0.post0
|
||||
pytz==2025.2
|
||||
PyYAML==6.0.2
|
||||
referencing==0.36.2
|
||||
regex==2024.11.6
|
||||
requests==2.32.4
|
||||
rich==14.0.0
|
||||
rpds-py==0.26.0
|
||||
safetensors==0.5.3
|
||||
setuptools==78.1.0
|
||||
scikit-learn==1.7.0
|
||||
scipy==1.16.0
|
||||
setuptools==80.9.0
|
||||
six==1.17.0
|
||||
sympy==1.14.0
|
||||
tabulate==0.9.0
|
||||
threadpoolctl==3.6.0
|
||||
tokenizers==0.21.2
|
||||
torch==2.9.0.dev20250706+rocm6.4
|
||||
torchaudio==2.8.0.dev20250706+rocm6.4
|
||||
torchvision==0.24.0.dev20250706+rocm6.4
|
||||
torch==2.7.1
|
||||
tqdm==4.67.1
|
||||
transformers==4.53.1
|
||||
typing_extensions==4.14.0
|
||||
transformers==4.52.4
|
||||
triton==3.3.1
|
||||
typing_extensions==4.14.1
|
||||
tzdata==2025.2
|
||||
urllib3==2.5.0
|
||||
Werkzeug==3.1.3
|
||||
wrapt==1.17.2
|
||||
xxhash==3.5.0
|
||||
yarl==1.20.1
|
||||
zipp==3.23.0
|
||||
|
Reference in New Issue
Block a user