SISU/generator.py
2024-12-25 00:09:57 +02:00

33 lines
1.1 KiB
Python

import torch.nn as nn
class SISUGenerator(nn.Module):
def __init__(self, upscale_scale=4): # No noise_dim parameter
super(SISUGenerator, self).__init__()
layer = 32
# Convolution layers
self.conv1 = nn.Sequential(
nn.Conv1d(1, layer * 2, kernel_size=7, padding=1),
nn.PReLU(),
nn.Conv1d(layer * 2, layer * 5, kernel_size=5, padding=1),
nn.PReLU(),
nn.Conv1d(layer * 5, layer * 5, kernel_size=3, padding=1),
nn.PReLU()
)
# Transposed convolution for upsampling
self.upsample = nn.ConvTranspose1d(layer * 5, layer * 5, kernel_size=upscale_scale, stride=upscale_scale)
self.conv2 = nn.Sequential(
nn.Conv1d(layer * 5, layer * 5, kernel_size=3, padding=1),
nn.PReLU(),
nn.Conv1d(layer * 5, layer * 2, kernel_size=5, padding=1),
nn.PReLU(),
nn.Conv1d(layer * 2, 1, kernel_size=7, padding=1)
)
def forward(self, x, upscale_scale=4):
x = self.conv1(x)
x = self.upsample(x)
x = self.conv2(x)
return x