143 lines
5.3 KiB
Python
143 lines
5.3 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
|
|
import torchaudio
|
|
import torchaudio.transforms as T
|
|
|
|
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
|
|
mfccs_true = mfcc_transform(y_true)
|
|
mfccs_pred = mfcc_transform(y_pred)
|
|
|
|
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
|
|
mfccs_true = mfccs_true[:, :, :min_len]
|
|
mfccs_pred = mfccs_pred[:, :, :min_len]
|
|
|
|
loss = torch.mean((mfccs_true - mfccs_pred)**2)
|
|
return loss
|
|
|
|
def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
|
|
mel_spec_true = mel_transform(y_true)
|
|
mel_spec_pred = mel_transform(y_pred)
|
|
|
|
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
|
|
mel_spec_true = mel_spec_true[..., :min_len]
|
|
mel_spec_pred = mel_spec_pred[..., :min_len]
|
|
|
|
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
|
|
return loss
|
|
|
|
def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
|
|
mel_spec_true = mel_transform(y_true)
|
|
mel_spec_pred = mel_transform(y_pred)
|
|
|
|
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
|
|
mel_spec_true = mel_spec_true[..., :min_len]
|
|
mel_spec_pred = mel_spec_pred[..., :min_len]
|
|
|
|
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
|
|
return loss
|
|
|
|
def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
|
|
stft_mag_true = stft_transform(y_true)
|
|
stft_mag_pred = stft_transform(y_pred)
|
|
|
|
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
|
|
stft_mag_true = stft_mag_true[..., :min_len]
|
|
stft_mag_pred = stft_mag_pred[..., :min_len]
|
|
|
|
loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
|
|
return loss
|
|
|
|
def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
|
|
stft_mag_true = stft_transform(y_true)
|
|
stft_mag_pred = stft_transform(y_pred)
|
|
|
|
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
|
|
stft_mag_true = stft_mag_true[..., :min_len]
|
|
stft_mag_pred = stft_mag_pred[..., :min_len]
|
|
|
|
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
|
|
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
|
|
|
|
loss = torch.mean(norm_diff / (norm_true + eps))
|
|
return loss
|
|
|
|
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
|
|
optimizer.zero_grad()
|
|
|
|
# Forward pass for real samples
|
|
discriminator_decision_from_real = discriminator(high_quality)
|
|
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
|
|
|
with torch.no_grad():
|
|
generator_output = generator(low_quality)
|
|
discriminator_decision_from_fake = discriminator(generator_output)
|
|
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
|
|
|
|
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
|
|
|
d_loss.backward()
|
|
# Optional: Gradient Clipping (can be helpful)
|
|
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
|
|
optimizer.step()
|
|
|
|
return d_loss
|
|
|
|
def generator_train(
|
|
low_quality,
|
|
high_quality,
|
|
real_labels,
|
|
generator,
|
|
discriminator,
|
|
adv_criterion,
|
|
g_optimizer,
|
|
device,
|
|
mel_transform: T.MelSpectrogram,
|
|
stft_transform: T.Spectrogram,
|
|
mfcc_transform: T.MFCC,
|
|
lambda_adv: float = 1.0,
|
|
lambda_mel_l1: float = 10.0,
|
|
lambda_log_stft: float = 1.0,
|
|
lambda_mfcc: float = 1.0
|
|
):
|
|
g_optimizer.zero_grad()
|
|
|
|
generator_output = generator(low_quality)
|
|
|
|
discriminator_decision = discriminator(generator_output)
|
|
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
|
|
|
|
mel_l1 = 0.0
|
|
log_stft_l1 = 0.0
|
|
mfcc_l = 0.0
|
|
|
|
# Calculate Mel L1 Loss if weight is positive
|
|
if lambda_mel_l1 > 0:
|
|
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality, generator_output)
|
|
|
|
# Calculate Log STFT L1 Loss if weight is positive
|
|
if lambda_log_stft > 0:
|
|
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality, generator_output)
|
|
|
|
# Calculate MFCC Loss if weight is positive
|
|
if lambda_mfcc > 0:
|
|
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality, generator_output)
|
|
|
|
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
|
|
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
|
|
mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
|
|
|
|
combined_loss = (lambda_adv * adversarial_loss) + \
|
|
(lambda_mel_l1 * mel_l1_tensor) + \
|
|
(lambda_log_stft * log_stft_l1_tensor) + \
|
|
(lambda_mfcc * mfcc_l_tensor)
|
|
|
|
combined_loss.backward()
|
|
# Optional: Gradient Clipping
|
|
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
|
|
g_optimizer.step()
|
|
|
|
# 6. Return values for logging
|
|
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor
|