SISU/data.py

47 lines
2.0 KiB
Python

from torch.utils.data import Dataset
import torch.nn.functional as F
import torch
import torchaudio
import os
import random
import torchaudio.transforms as T
import tqdm
import AudioUtils
class AudioDataset(Dataset):
audio_sample_rates = [11025]
def __init__(self, input_dir, device):
self.device = device
input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav') or f.endswith('.mp3') or f.endswith('.flac')]
data = []
for audio_clip in tqdm.tqdm(input_files, desc=f"Processing {len(input_files)} audio file(s)"):
audio, original_sample_rate = torchaudio.load(audio_clip, normalize=True)
audio = AudioUtils.stereo_tensor_to_mono(audio)
# Generate low-quality audio with random downsampling
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
low_audio = resample_transform_low(audio)
low_audio = resample_transform_high(low_audio)
splitted_high_quality_audio = AudioUtils.split_audio(audio, 128)
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(splitted_high_quality_audio[-1], 128)
splitted_low_quality_audio = AudioUtils.split_audio(low_audio, 128)
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(splitted_low_quality_audio[-1], 128)
for high_quality_sample, low_quality_sample in zip(splitted_high_quality_audio, splitted_low_quality_audio):
data.append(((high_quality_sample, low_quality_sample), (original_sample_rate, mangled_sample_rate)))
self.audio_data = data
def __len__(self):
return len(self.audio_data)
def __getitem__(self, idx):
return self.audio_data[idx]