import torch import torch.nn as nn import torch.optim as optim import torchaudio import tqdm from torch.utils.data import random_split from torch.utils.data import DataLoader from data import AudioDataset from generator import SISUGenerator from discriminator import SISUDiscriminator # Check for CUDA availability device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Initialize dataset and dataloader dataset_dir = './dataset/good' dataset = AudioDataset(dataset_dir, target_duration=2.0) # 5 seconds target duration dataset_size = len(dataset) train_size = int(dataset_size * .9) val_size = int(dataset_size-train_size) train_dataset, val_dataset = random_split(dataset, [train_size, val_size]) train_data_loader = DataLoader(train_dataset, batch_size=4, shuffle=True) val_data_loader = DataLoader(val_dataset, batch_size=4, shuffle=True) # Initialize models and move them to device generator = SISUGenerator() discriminator = SISUDiscriminator() generator = generator.to(device) discriminator = discriminator.to(device) # Loss and optimizers criterion = nn.MSELoss() # Use Mean Squared Error loss optimizer_g = optim.Adam(generator.parameters(), lr=0.0005, betas=(0.5, 0.999)) optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999)) # Learning rate scheduler scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.1, patience=5) # Training loop num_epochs = 500 for epoch in range(num_epochs): latest_crap_audio = torch.empty((2,3), dtype=torch.int64) for high_quality, low_quality in tqdm.tqdm(train_data_loader): # Check for NaN values in input tensors if torch.isnan(low_quality).any() or torch.isnan(high_quality).any(): continue high_quality = high_quality.to(device) low_quality = low_quality.to(device) batch_size = low_quality.size(0) # Labels real_labels = torch.ones(batch_size, 1).to(device) fake_labels = torch.zeros(batch_size, 1).to(device) # Train Discriminator optimizer_d.zero_grad() outputs = discriminator(high_quality) d_loss_real = criterion(outputs, real_labels) d_loss_real.backward() resampled_audio = generator(low_quality) outputs = discriminator(resampled_audio.detach()) d_loss_fake = criterion(outputs, fake_labels) d_loss_fake.backward() # Gradient clipping for discriminator clip_value = 2.0 for param in discriminator.parameters(): if param.grad is not None: param.grad.clamp_(-clip_value, clip_value) optimizer_d.step() d_loss = d_loss_real + d_loss_fake # Train Generator optimizer_g.zero_grad() outputs = discriminator(resampled_audio) g_loss = criterion(outputs, real_labels) g_loss.backward() # Gradient clipping for generator clip_value = 1.0 for param in generator.parameters(): if param.grad is not None: param.grad.clamp_(-clip_value, clip_value) optimizer_g.step() scheduler.step(d_loss + g_loss) latest_crap_audio = resampled_audio if epoch % 10 == 0: print(latest_crap_audio.size()) torchaudio.save(f"./epoch-{epoch}-audio.wav", latest_crap_audio[0].cpu(), 44100) print(f'Epoch [{epoch+1}/{num_epochs}]') torch.save(generator.state_dict(), "generator.pt") torch.save(discriminator.state_dict(), "discriminator.pt") print("Training complete!")