import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.parametrizations import weight_norm, spectral_norm # ------------------------------------------------------------------- # 1. Multi-Period Discriminator (MPD) # Captures periodic structures (pitch/timbre) by folding audio. # ------------------------------------------------------------------- class DiscriminatorP(nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period self.use_spectral_norm = use_spectral_norm # Use spectral_norm for stability, or weight_norm for performance norm_f = spectral_norm if use_spectral_norm else weight_norm # We use 2D convs because we "fold" the 1D audio into 2D (Period x Time) self.convs = nn.ModuleList([ norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(2, 0))), norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(2, 0))), norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(2, 0))), norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(2, 0))), norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d conversion: [B, C, T] -> [B, C, T/P, P] b, c, t = x.shape if t % self.period != 0: # Pad if not divisible by period n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, 0.1) fmap.append(x) # Store feature map for Feature Matching Loss x = self.conv_post(x) fmap.append(x) # Flatten back to 1D for score x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(nn.Module): def __init__(self, periods=[2, 3, 5, 7, 11]): super(MultiPeriodDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorP(p) for p in periods ]) def forward(self, y, y_hat): y_d_rs = [] # Real scores y_d_gs = [] # Generated (Fake) scores fmap_rs = [] # Real feature maps fmap_gs = [] # Generated (Fake) feature maps for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs # ------------------------------------------------------------------- # 2. Multi-Scale Discriminator (MSD) # Captures structure at different audio resolutions (raw, x0.5, x0.25). # ------------------------------------------------------------------- class DiscriminatorS(nn.Module): def __init__(self, use_spectral_norm=False): super(DiscriminatorS, self).__init__() norm_f = spectral_norm if use_spectral_norm else weight_norm # Standard 1D Convolutions with large receptive field self.convs = nn.ModuleList([ norm_f(nn.Conv1d(1, 16, 15, 1, padding=7)), norm_f(nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(nn.Conv1d(1024, 1024, 5, 1, padding=2)), ]) self.conv_post = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, 0.1) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(nn.Module): def __init__(self): super(MultiScaleDiscriminator, self).__init__() # 3 Scales: Original, Downsampled x2, Downsampled x4 self.discriminators = nn.ModuleList([ DiscriminatorS(use_spectral_norm=True), DiscriminatorS(), DiscriminatorS(), ]) self.meanpools = nn.ModuleList([ nn.AvgPool1d(4, 2, padding=2), nn.AvgPool1d(4, 2, padding=2) ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if i != 0: # Downsample input for subsequent discriminators y = self.meanpools[i-1](y) y_hat = self.meanpools[i-1](y_hat) y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs # ------------------------------------------------------------------- # 3. Master Wrapper # Combines MPD and MSD into one class to fit your training script. # ------------------------------------------------------------------- class SISUDiscriminator(nn.Module): def __init__(self): super(SISUDiscriminator, self).__init__() self.mpd = MultiPeriodDiscriminator() self.msd = MultiScaleDiscriminator() def forward(self, y, y_hat): # Return format: # scores_real, scores_fake, features_real, features_fake # Run Multi-Period mpd_y_d_rs, mpd_y_d_gs, mpd_fmap_rs, mpd_fmap_gs = self.mpd(y, y_hat) # Run Multi-Scale msd_y_d_rs, msd_y_d_gs, msd_fmap_rs, msd_fmap_gs = self.msd(y, y_hat) # Combine all results return ( mpd_y_d_rs + msd_y_d_rs, # All real scores mpd_y_d_gs + msd_y_d_gs, # All fake scores mpd_fmap_rs + msd_fmap_rs, # All real feature maps mpd_fmap_gs + msd_fmap_gs # All fake feature maps )