from torch.utils.data import Dataset import torch.nn.functional as F import torch import torchaudio import os import random import torchaudio.transforms as T import AudioUtils class AudioDataset(Dataset): audio_sample_rates = [11025] MAX_LENGTH = 44100 # Define your desired maximum length here def __init__(self, input_dir, device): self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')] self.device = device def __len__(self): return len(self.input_files) def __getitem__(self, idx): # Load high-quality audio high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True) # Change to mono high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio) # Generate low-quality audio with random downsampling mangled_sample_rate = random.choice(self.audio_sample_rates) resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate) resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate) low_quality_audio = resample_transform_low(high_quality_audio) low_quality_audio = resample_transform_high(low_quality_audio) splitted_high_quality_audio = AudioUtils.split_audio(high_quality_audio, 128) splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(splitted_high_quality_audio[-1], 128) splitted_high_quality_audio = [tensor.to(self.device) for tensor in splitted_high_quality_audio] splitted_low_quality_audio = AudioUtils.split_audio(low_quality_audio, 128) splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(splitted_low_quality_audio[-1], 128) splitted_low_quality_audio = [tensor.to(self.device) for tensor in splitted_low_quality_audio] return (splitted_high_quality_audio, original_sample_rate), (splitted_low_quality_audio, mangled_sample_rate)