import torch import torch.nn as nn import torch.nn.utils as utils def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True): padding = (kernel_size // 2) * dilation conv_layer = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding) if spectral_norm: conv_layer = utils.spectral_norm(conv_layer) return nn.Sequential( conv_layer, nn.LeakyReLU(0.2, inplace=True), nn.BatchNorm1d(out_channels) ) class AttentionBlock(nn.Module): def __init__(self, channels): super(AttentionBlock, self).__init__() self.attention = nn.Sequential( nn.Conv1d(channels, channels // 4, kernel_size=1), nn.ReLU(), nn.Conv1d(channels // 4, channels, kernel_size=1), nn.Sigmoid() ) def forward(self, x): attention_weights = self.attention(x) return x * attention_weights class SISUDiscriminator(nn.Module): def __init__(self, layers=4): #Increased base layer count super(SISUDiscriminator, self).__init__() self.model = nn.Sequential( discriminator_block(1, layers, kernel_size=7, stride=4), #Aggressive downsampling discriminator_block(layers, layers * 2, kernel_size=5, stride=2), discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2), discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4), AttentionBlock(layers * 8), #Added attention discriminator_block(layers * 8, layers * 16, kernel_size=5, dilation=8), discriminator_block(layers * 16, layers * 16, kernel_size=3, dilation=1), discriminator_block(layers * 16, layers * 8, kernel_size=3, dilation=2), discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=1), discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1), discriminator_block(layers * 2, layers, kernel_size=3, stride=1), discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False) #last layer no spectral norm. ) self.global_avg_pool = nn.AdaptiveAvgPool1d(1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.model(x) x = self.global_avg_pool(x) x = x.view(-1, 1) x = self.sigmoid(x) return x