Merge new-arch, because it has proven to give the best results #1
@ -13,7 +13,7 @@ def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dila
|
|||||||
class SISUDiscriminator(nn.Module):
|
class SISUDiscriminator(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(SISUDiscriminator, self).__init__()
|
super(SISUDiscriminator, self).__init__()
|
||||||
layers = 32 # Increased base layer count
|
layers = 4 # Increased base layer count
|
||||||
self.model = nn.Sequential(
|
self.model = nn.Sequential(
|
||||||
# Initial Convolution
|
# Initial Convolution
|
||||||
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample
|
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample
|
||||||
@ -21,10 +21,9 @@ class SISUDiscriminator(nn.Module):
|
|||||||
# Core Discriminator Blocks with varied kernels and dilations
|
# Core Discriminator Blocks with varied kernels and dilations
|
||||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample
|
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample
|
||||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
|
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
|
||||||
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=16),
|
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=16),
|
||||||
discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=8),
|
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=8),
|
||||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=2),
|
discriminator_block(layers * 2, layers, kernel_size=3, dilation=1),
|
||||||
discriminator_block(layers * 2, layers, kernel_size=5, dilation=1),
|
|
||||||
# Final Convolution
|
# Final Convolution
|
||||||
discriminator_block(layers, 1, kernel_size=3, stride=1),
|
discriminator_block(layers, 1, kernel_size=3, stride=1),
|
||||||
)
|
)
|
||||||
|
@ -10,7 +10,7 @@ def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
|||||||
class SISUGenerator(nn.Module):
|
class SISUGenerator(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(SISUGenerator, self).__init__()
|
super(SISUGenerator, self).__init__()
|
||||||
layer = 32 # Increased base layer count
|
layer = 4 # Increased base layer count
|
||||||
self.conv1 = nn.Sequential(
|
self.conv1 = nn.Sequential(
|
||||||
nn.Conv1d(1, layer, kernel_size=7, padding=3),
|
nn.Conv1d(1, layer, kernel_size=7, padding=3),
|
||||||
nn.BatchNorm1d(layer),
|
nn.BatchNorm1d(layer),
|
||||||
@ -18,9 +18,9 @@ class SISUGenerator(nn.Module):
|
|||||||
)
|
)
|
||||||
self.conv_blocks = nn.Sequential(
|
self.conv_blocks = nn.Sequential(
|
||||||
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
||||||
conv_block(layer, layer*4, kernel_size=5, dilation=2), # Local Context
|
conv_block(layer, layer*2, kernel_size=5, dilation=2), # Local Context
|
||||||
conv_block(layer*4, layer*4, kernel_size=3, dilation=16), # Longer range dependencies
|
conv_block(layer*2, layer*2, kernel_size=3, dilation=16), # Longer range dependencies
|
||||||
conv_block(layer*4, layer*2, kernel_size=5, dilation=8), # Wider context
|
conv_block(layer*2, layer*2, kernel_size=5, dilation=8), # Wider context
|
||||||
conv_block(layer*2, layer, kernel_size=5, dilation=2), # Local Context
|
conv_block(layer*2, layer, kernel_size=5, dilation=2), # Local Context
|
||||||
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
conv_block(layer, layer, kernel_size=3, dilation=1), # Local details
|
||||||
)
|
)
|
||||||
|
@ -85,7 +85,7 @@ dataset = AudioDataset(dataset_dir)
|
|||||||
|
|
||||||
# ========= SINGLE =========
|
# ========= SINGLE =========
|
||||||
|
|
||||||
train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
|
train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
|
||||||
|
|
||||||
# Initialize models and move them to device
|
# Initialize models and move them to device
|
||||||
generator = SISUGenerator()
|
generator = SISUGenerator()
|
||||||
|
Loading…
Reference in New Issue
Block a user