Merge new-arch, because it has proven to give the best results #1
@ -39,7 +39,7 @@ class AttentionBlock(nn.Module):
|
||||
return x * attention_weights
|
||||
|
||||
class SISUDiscriminator(nn.Module):
|
||||
def __init__(self, base_channels=64):
|
||||
def __init__(self, base_channels=16):
|
||||
super(SISUDiscriminator, self).__init__()
|
||||
layers = base_channels
|
||||
self.model = nn.Sequential(
|
||||
|
@ -48,7 +48,7 @@ class ResidualInResidualBlock(nn.Module):
|
||||
return x + residual
|
||||
|
||||
class SISUGenerator(nn.Module):
|
||||
def __init__(self, channels=64, num_rirb=8, alpha=1.0):
|
||||
def __init__(self, channels=16, num_rirb=4, alpha=1.0):
|
||||
super(SISUGenerator, self).__init__()
|
||||
self.alpha = alpha
|
||||
|
||||
|
22
training.py
22
training.py
@ -34,7 +34,7 @@ parser.add_argument("--discriminator", type=str, default=None,
|
||||
parser.add_argument("--device", type=str, default="cpu", help="Select device")
|
||||
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
|
||||
parser.add_argument("--debug", action="store_true", help="Print debug logs")
|
||||
parser.add_argument("--continue_training", type=bool, default=False, help="Continue training using temp_generator and temp_discriminator models")
|
||||
parser.add_argument("--continue_training", action="store_true", help="Continue training using temp_generator and temp_discriminator models")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -60,6 +60,10 @@ mel_transform = T.MelSpectrogram(
|
||||
win_length=win_length, n_mels=n_mels, power=1.0 # Magnitude Mel
|
||||
).to(device)
|
||||
|
||||
stft_transform = T.Spectrogram(
|
||||
n_fft=n_fft, win_length=win_length, hop_length=hop_length
|
||||
).to(device)
|
||||
|
||||
debug = args.debug
|
||||
|
||||
# Initialize dataset and dataloader
|
||||
@ -72,7 +76,7 @@ os.makedirs(audio_output_dir, exist_ok=True)
|
||||
|
||||
# ========= SINGLE =========
|
||||
|
||||
train_data_loader = DataLoader(dataset, batch_size=12, shuffle=True)
|
||||
train_data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
|
||||
|
||||
|
||||
# ========= MODELS =========
|
||||
@ -143,7 +147,7 @@ def start_training():
|
||||
|
||||
# ========= GENERATOR =========
|
||||
generator.train()
|
||||
generator_output, combined_loss, adversarial_loss, mel_l1_tensor = generator_train(
|
||||
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
|
||||
low_quality_sample,
|
||||
high_quality_sample,
|
||||
real_labels,
|
||||
@ -152,11 +156,13 @@ def start_training():
|
||||
criterion_d,
|
||||
optimizer_g,
|
||||
device,
|
||||
mel_transform
|
||||
mel_transform,
|
||||
stft_transform,
|
||||
mfcc_transform
|
||||
)
|
||||
|
||||
if debug:
|
||||
print(combined_loss, adversarial_loss, mel_l1_tensor)
|
||||
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
|
||||
scheduler_d.step(d_loss.detach())
|
||||
scheduler_g.step(adversarial_loss.detach())
|
||||
|
||||
@ -173,9 +179,9 @@ def start_training():
|
||||
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
|
||||
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
|
||||
|
||||
if debug:
|
||||
print(generator.state_dict().keys())
|
||||
print(discriminator.state_dict().keys())
|
||||
#if debug:
|
||||
# print(generator.state_dict().keys())
|
||||
# print(discriminator.state_dict().keys())
|
||||
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
|
||||
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
|
||||
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
|
||||
|
@ -37,7 +37,6 @@ def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tenso
|
||||
mel_spec_true = mel_spec_true[..., :min_len]
|
||||
mel_spec_pred = mel_spec_pred[..., :min_len]
|
||||
|
||||
# L2 Loss (Mean Squared Error)
|
||||
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
|
||||
return loss
|
||||
|
||||
@ -49,7 +48,6 @@ def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor,
|
||||
stft_mag_true = stft_mag_true[..., :min_len]
|
||||
stft_mag_pred = stft_mag_pred[..., :min_len]
|
||||
|
||||
# Log Magnitude L1 Loss
|
||||
loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
|
||||
return loss
|
||||
|
||||
@ -61,12 +59,9 @@ def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tenso
|
||||
stft_mag_true = stft_mag_true[..., :min_len]
|
||||
stft_mag_pred = stft_mag_pred[..., :min_len]
|
||||
|
||||
# Calculate Frobenius norms and the loss
|
||||
# Ensure norms are calculated over frequency and time dims ([..., freq, time])
|
||||
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
|
||||
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
|
||||
|
||||
# Average loss over the batch
|
||||
loss = torch.mean(norm_diff / (norm_true + eps))
|
||||
return loss
|
||||
|
||||
@ -77,16 +72,13 @@ def discriminator_train(high_quality, low_quality, real_labels, fake_labels, dis
|
||||
discriminator_decision_from_real = discriminator(high_quality[0])
|
||||
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
||||
|
||||
# Forward pass for fake samples (from generator output)
|
||||
with torch.no_grad(): # Detach generator output within no_grad context
|
||||
with torch.no_grad():
|
||||
generator_output = generator(low_quality[0])
|
||||
discriminator_decision_from_fake = discriminator(generator_output) # No need to detach again if inside no_grad
|
||||
discriminator_decision_from_fake = discriminator(generator_output)
|
||||
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
|
||||
|
||||
# Combine real and fake losses
|
||||
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
||||
|
||||
# Backward pass and optimization
|
||||
d_loss.backward()
|
||||
# Optional: Gradient Clipping (can be helpful)
|
||||
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
|
||||
@ -100,65 +92,53 @@ def generator_train(
|
||||
real_labels,
|
||||
generator,
|
||||
discriminator,
|
||||
adv_criterion, # Criterion for adversarial loss (e.g., BCEWithLogitsLoss)
|
||||
adv_criterion,
|
||||
g_optimizer,
|
||||
device,
|
||||
# --- Pass necessary transforms and loss weights ---
|
||||
mel_transform: T.MelSpectrogram, # Example: Pass Mel transform
|
||||
# stft_transform: T.Spectrogram, # Pass STFT transform if using STFT losses
|
||||
# mfcc_transform: T.MFCC, # Pass MFCC transform if using MFCC loss
|
||||
lambda_adv: float = 1.0, # Weight for adversarial loss
|
||||
lambda_mel_l1: float = 10.0, # Example: Weight for Mel L1 loss
|
||||
# lambda_log_stft: float = 0.0, # Set weights > 0 for losses you want to use
|
||||
# lambda_mfcc: float = 0.0
|
||||
mel_transform: T.MelSpectrogram,
|
||||
stft_transform: T.Spectrogram,
|
||||
mfcc_transform: T.MFCC,
|
||||
lambda_adv: float = 1.0,
|
||||
lambda_mel_l1: float = 10.0,
|
||||
lambda_log_stft: float = 1.0,
|
||||
lambda_mfcc: float = 1.0
|
||||
):
|
||||
g_optimizer.zero_grad()
|
||||
|
||||
# 1. Generate high-quality audio from low-quality input
|
||||
generator_output = generator(low_quality[0])
|
||||
|
||||
# 2. Calculate Adversarial Loss (Generator tries to fool discriminator)
|
||||
discriminator_decision = discriminator(generator_output)
|
||||
# Generator wants discriminator to output "real" labels for its fakes
|
||||
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
|
||||
|
||||
# 3. Calculate Reconstruction/Spectrogram Loss(es)
|
||||
# --- Choose and calculate the losses you want to include ---
|
||||
mel_l1 = 0.0
|
||||
# log_stft_l1 = 0.0
|
||||
# mfcc_l = 0.0
|
||||
log_stft_l1 = 0.0
|
||||
mfcc_l = 0.0
|
||||
|
||||
# Calculate Mel L1 Loss if weight is positive
|
||||
if lambda_mel_l1 > 0:
|
||||
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output)
|
||||
|
||||
# # Calculate Log STFT L1 Loss if weight is positive
|
||||
# if lambda_log_stft > 0:
|
||||
# log_stft_l1 = log_stft_magnitude_loss(stft_transform, hq_audio, generator_output)
|
||||
# Calculate Log STFT L1 Loss if weight is positive
|
||||
if lambda_log_stft > 0:
|
||||
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality[0], generator_output)
|
||||
|
||||
# # Calculate MFCC Loss if weight is positive
|
||||
# if lambda_mfcc > 0:
|
||||
# mfcc_l = gpu_mfcc_loss(mfcc_transform, hq_audio, generator_output)
|
||||
# --- End of Loss Calculation Choices ---
|
||||
# Calculate MFCC Loss if weight is positive
|
||||
if lambda_mfcc > 0:
|
||||
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality[0], generator_output)
|
||||
|
||||
|
||||
# 4. Combine Losses
|
||||
# Make sure calculated losses are tensors even if weights are 0 initially
|
||||
# (or handle appropriately in the sum)
|
||||
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
|
||||
# log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
|
||||
# mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
|
||||
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
|
||||
mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
|
||||
|
||||
combined_loss = (lambda_adv * adversarial_loss) + \
|
||||
(lambda_mel_l1 * mel_l1_tensor)
|
||||
# + (lambda_log_stft * log_stft_l1_tensor) \
|
||||
# + (lambda_mfcc * mfcc_l_tensor)
|
||||
(lambda_mel_l1 * mel_l1_tensor) + \
|
||||
(lambda_log_stft * log_stft_l1_tensor) + \
|
||||
(lambda_mfcc * mfcc_l_tensor)
|
||||
|
||||
# 5. Backward Pass and Optimization
|
||||
combined_loss.backward()
|
||||
# Optional: Gradient Clipping
|
||||
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
|
||||
g_optimizer.step()
|
||||
|
||||
# 6. Return values for logging
|
||||
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor
|
||||
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor
|
||||
|
Loading…
Reference in New Issue
Block a user