Merge new-arch, because it has proven to give the best results #1

Merged
NikkeDoy merged 14 commits from new-arch into main 2025-04-30 23:47:41 +03:00
2 changed files with 148 additions and 24 deletions
Showing only changes of commit c04b072de6 - Show all commits

View File

@ -41,11 +41,24 @@ args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu") device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}") print(f"Using device: {device}")
# mfcc_transform = T.MFCC( # Parameters
# sample_rate=44100, sample_rate = 44100
# n_mfcc=20, n_fft = 2048
# melkwargs={'n_fft': 2048, 'hop_length': 256} hop_length = 256
# ).to(device) win_length = n_fft
n_mels = 128
n_mfcc = 20 # If using MFCC
mfcc_transform = T.MFCC(
sample_rate,
n_mfcc,
melkwargs = {'n_fft': n_fft, 'hop_length': hop_length}
).to(device)
mel_transform = T.MelSpectrogram(
sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length,
win_length=win_length, n_mels=n_mels, power=1.0 # Magnitude Mel
).to(device)
debug = args.debug debug = args.debug
@ -130,18 +143,20 @@ def start_training():
# ========= GENERATOR ========= # ========= GENERATOR =========
generator.train() generator.train()
generator_output, adversarial_loss = generator_train( generator_output, combined_loss, adversarial_loss, mel_l1_tensor = generator_train(
low_quality_sample, low_quality_sample,
high_quality_sample, high_quality_sample,
real_labels, real_labels,
generator, generator,
discriminator, discriminator,
criterion_g, criterion_d,
optimizer_g optimizer_g,
device,
mel_transform
) )
if debug: if debug:
print(d_loss, adversarial_loss) print(combined_loss, adversarial_loss, mel_l1_tensor)
scheduler_d.step(d_loss.detach()) scheduler_d.step(d_loss.detach())
scheduler_g.step(adversarial_loss.detach()) scheduler_g.step(adversarial_loss.detach())

View File

@ -3,16 +3,73 @@ import torch.nn as nn
import torch.optim as optim import torch.optim as optim
import torchaudio import torchaudio
import torchaudio.transforms as T
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred): def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
mfccs_true = mfcc_transform(y_true) mfccs_true = mfcc_transform(y_true)
mfccs_pred = mfcc_transform(y_pred) mfccs_pred = mfcc_transform(y_pred)
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2]) min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len] mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len] mfccs_pred = mfccs_pred[:, :, :min_len]
loss = torch.mean((mfccs_true - mfccs_pred)**2) loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss return loss
def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
# Ensure same time dimension length (due to potential framing differences)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
# L1 Loss (Mean Absolute Error)
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
return loss
def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
# L2 Loss (Mean Squared Error)
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
return loss
def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
# Log Magnitude L1 Loss
loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
return loss
def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
# Calculate Frobenius norms and the loss
# Ensure norms are calculated over frequency and time dims ([..., freq, time])
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
# Average loss over the batch
loss = torch.mean(norm_diff / (norm_true + eps))
return loss
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer): def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
optimizer.zero_grad() optimizer.zero_grad()
@ -21,35 +78,87 @@ def discriminator_train(high_quality, low_quality, real_labels, fake_labels, dis
d_loss_real = criterion(discriminator_decision_from_real, real_labels) d_loss_real = criterion(discriminator_decision_from_real, real_labels)
# Forward pass for fake samples (from generator output) # Forward pass for fake samples (from generator output)
with torch.no_grad(): # Detach generator output within no_grad context
generator_output = generator(low_quality[0]) generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output.detach()) discriminator_decision_from_fake = discriminator(generator_output) # No need to detach again if inside no_grad
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels) d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
# Combine real and fake losses # Combine real and fake losses
d_loss = (d_loss_real + d_loss_fake) / 2.0 d_loss = (d_loss_real + d_loss_fake) / 2.0
# Backward pass and optimization # Backward pass and optimization
d_loss.backward() d_loss.backward()
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping # Optional: Gradient Clipping (can be helpful)
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer.step() optimizer.step()
return d_loss return d_loss
def generator_train(low_quality, high_quality, real_labels, generator, discriminator, criterion, optimizer): def generator_train(
optimizer.zero_grad() low_quality,
high_quality,
real_labels,
generator,
discriminator,
adv_criterion, # Criterion for adversarial loss (e.g., BCEWithLogitsLoss)
g_optimizer,
device,
# --- Pass necessary transforms and loss weights ---
mel_transform: T.MelSpectrogram, # Example: Pass Mel transform
# stft_transform: T.Spectrogram, # Pass STFT transform if using STFT losses
# mfcc_transform: T.MFCC, # Pass MFCC transform if using MFCC loss
lambda_adv: float = 1.0, # Weight for adversarial loss
lambda_mel_l1: float = 10.0, # Example: Weight for Mel L1 loss
# lambda_log_stft: float = 0.0, # Set weights > 0 for losses you want to use
# lambda_mfcc: float = 0.0
):
g_optimizer.zero_grad()
# Forward pass for fake samples (from generator output) # 1. Generate high-quality audio from low-quality input
generator_output = generator(low_quality[0]) generator_output = generator(low_quality[0])
#mfcc_l = gpu_mfcc_loss(high_quality[0], generator_output) # 2. Calculate Adversarial Loss (Generator tries to fool discriminator)
discriminator_decision = discriminator(generator_output) discriminator_decision = discriminator(generator_output)
adversarial_loss = criterion(discriminator_decision, real_labels) # Generator wants discriminator to output "real" labels for its fakes
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
#combined_loss = adversarial_loss + 0.5 * mfcc_l # 3. Calculate Reconstruction/Spectrogram Loss(es)
# --- Choose and calculate the losses you want to include ---
mel_l1 = 0.0
# log_stft_l1 = 0.0
# mfcc_l = 0.0
adversarial_loss.backward() # Calculate Mel L1 Loss if weight is positive
optimizer.step() if lambda_mel_l1 > 0:
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output)
#return (generator_output, combined_loss, adversarial_loss, mfcc_l) # # Calculate Log STFT L1 Loss if weight is positive
return (generator_output, adversarial_loss) # if lambda_log_stft > 0:
# log_stft_l1 = log_stft_magnitude_loss(stft_transform, hq_audio, generator_output)
# # Calculate MFCC Loss if weight is positive
# if lambda_mfcc > 0:
# mfcc_l = gpu_mfcc_loss(mfcc_transform, hq_audio, generator_output)
# --- End of Loss Calculation Choices ---
# 4. Combine Losses
# Make sure calculated losses are tensors even if weights are 0 initially
# (or handle appropriately in the sum)
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
# log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
# mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
combined_loss = (lambda_adv * adversarial_loss) + \
(lambda_mel_l1 * mel_l1_tensor)
# + (lambda_log_stft * log_stft_l1_tensor) \
# + (lambda_mfcc * mfcc_l_tensor)
# 5. Backward Pass and Optimization
combined_loss.backward()
# Optional: Gradient Clipping
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
g_optimizer.step()
# 6. Return values for logging
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor