Merge new-arch, because it has proven to give the best results #1
28
file_utils.py
Normal file
28
file_utils.py
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
import json
|
||||||
|
|
||||||
|
filepath = "my_data.json"
|
||||||
|
|
||||||
|
def write_data(filepath, data):
|
||||||
|
try:
|
||||||
|
with open(filepath, 'w') as f:
|
||||||
|
json.dump(data, f, indent=4) # Use indent for pretty formatting
|
||||||
|
print(f"Data written to '{filepath}'")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error writing to file: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
def read_data(filepath):
|
||||||
|
try:
|
||||||
|
with open(filepath, 'r') as f:
|
||||||
|
data = json.load(f)
|
||||||
|
print(f"Data read from '{filepath}'")
|
||||||
|
return data
|
||||||
|
except FileNotFoundError:
|
||||||
|
print(f"File not found: {filepath}")
|
||||||
|
return None
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
print(f"Error decoding JSON from file: {filepath}")
|
||||||
|
return None
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error reading from file: {e}")
|
||||||
|
return None
|
127
training.py
127
training.py
@ -20,6 +20,9 @@ from data import AudioDataset
|
|||||||
from generator import SISUGenerator
|
from generator import SISUGenerator
|
||||||
from discriminator import SISUDiscriminator
|
from discriminator import SISUDiscriminator
|
||||||
|
|
||||||
|
from training_utils import discriminator_train, generator_train
|
||||||
|
import file_utils as Data
|
||||||
|
|
||||||
import torchaudio.transforms as T
|
import torchaudio.transforms as T
|
||||||
|
|
||||||
# Init script argument parser
|
# Init script argument parser
|
||||||
@ -31,92 +34,55 @@ parser.add_argument("--discriminator", type=str, default=None,
|
|||||||
parser.add_argument("--device", type=str, default="cpu", help="Select device")
|
parser.add_argument("--device", type=str, default="cpu", help="Select device")
|
||||||
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
|
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
|
||||||
parser.add_argument("--debug", action="store_true", help="Print debug logs")
|
parser.add_argument("--debug", action="store_true", help="Print debug logs")
|
||||||
|
parser.add_argument("--continue_training", type=bool, default=False, help="Continue training using temp_generator and temp_discriminator models")
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
|
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
|
||||||
print(f"Using device: {device}")
|
print(f"Using device: {device}")
|
||||||
|
|
||||||
mfcc_transform = T.MFCC(
|
# mfcc_transform = T.MFCC(
|
||||||
sample_rate=44100,
|
# sample_rate=44100,
|
||||||
n_mfcc=20,
|
# n_mfcc=20,
|
||||||
melkwargs={'n_fft': 2048, 'hop_length': 256}
|
# melkwargs={'n_fft': 2048, 'hop_length': 256}
|
||||||
).to(device)
|
# ).to(device)
|
||||||
|
|
||||||
def gpu_mfcc_loss(y_true, y_pred):
|
|
||||||
mfccs_true = mfcc_transform(y_true)
|
|
||||||
mfccs_pred = mfcc_transform(y_pred)
|
|
||||||
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
|
|
||||||
mfccs_true = mfccs_true[:, :, :min_len]
|
|
||||||
mfccs_pred = mfccs_pred[:, :, :min_len]
|
|
||||||
loss = torch.mean((mfccs_true - mfccs_pred)**2)
|
|
||||||
return loss
|
|
||||||
|
|
||||||
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
|
|
||||||
optimizer_d.zero_grad()
|
|
||||||
|
|
||||||
# Forward pass for real samples
|
|
||||||
discriminator_decision_from_real = discriminator(high_quality[0])
|
|
||||||
d_loss_real = criterion_d(discriminator_decision_from_real, real_labels)
|
|
||||||
|
|
||||||
# Forward pass for fake samples (from generator output)
|
|
||||||
generator_output = generator(low_quality[0])
|
|
||||||
discriminator_decision_from_fake = discriminator(generator_output.detach())
|
|
||||||
d_loss_fake = criterion_d(discriminator_decision_from_fake, fake_labels)
|
|
||||||
|
|
||||||
# Combine real and fake losses
|
|
||||||
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
|
||||||
|
|
||||||
# Backward pass and optimization
|
|
||||||
d_loss.backward()
|
|
||||||
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
|
|
||||||
optimizer_d.step()
|
|
||||||
|
|
||||||
return d_loss
|
|
||||||
|
|
||||||
def generator_train(low_quality, high_quality, real_labels):
|
|
||||||
optimizer_g.zero_grad()
|
|
||||||
|
|
||||||
# Forward pass for fake samples (from generator output)
|
|
||||||
generator_output = generator(low_quality[0])
|
|
||||||
|
|
||||||
#mfcc_l = gpu_mfcc_loss(high_quality[0], generator_output)
|
|
||||||
|
|
||||||
discriminator_decision = discriminator(generator_output)
|
|
||||||
adversarial_loss = criterion_g(discriminator_decision, real_labels)
|
|
||||||
|
|
||||||
#combined_loss = adversarial_loss + 0.5 * mfcc_l
|
|
||||||
|
|
||||||
adversarial_loss.backward()
|
|
||||||
optimizer_g.step()
|
|
||||||
|
|
||||||
#return (generator_output, combined_loss, adversarial_loss, mfcc_l)
|
|
||||||
return (generator_output, adversarial_loss)
|
|
||||||
|
|
||||||
debug = args.debug
|
debug = args.debug
|
||||||
|
|
||||||
# Initialize dataset and dataloader
|
# Initialize dataset and dataloader
|
||||||
dataset_dir = './dataset/good'
|
dataset_dir = './dataset/good'
|
||||||
dataset = AudioDataset(dataset_dir, device)
|
dataset = AudioDataset(dataset_dir, device)
|
||||||
|
models_dir = "models"
|
||||||
|
os.makedirs(models_dir, exist_ok=True)
|
||||||
|
audio_output_dir = "output"
|
||||||
|
os.makedirs(audio_output_dir, exist_ok=True)
|
||||||
|
|
||||||
# ========= SINGLE =========
|
# ========= SINGLE =========
|
||||||
|
|
||||||
train_data_loader = DataLoader(dataset, batch_size=12, shuffle=True)
|
train_data_loader = DataLoader(dataset, batch_size=12, shuffle=True)
|
||||||
|
|
||||||
# Initialize models and move them to device
|
|
||||||
|
# ========= MODELS =========
|
||||||
|
|
||||||
generator = SISUGenerator()
|
generator = SISUGenerator()
|
||||||
discriminator = SISUDiscriminator()
|
discriminator = SISUDiscriminator()
|
||||||
|
|
||||||
epoch: int = args.epoch
|
epoch: int = args.epoch
|
||||||
|
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
|
||||||
|
|
||||||
|
if args.continue_training:
|
||||||
|
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
|
||||||
|
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
|
||||||
|
epoch = epoch_from_file["epoch"] + 1
|
||||||
|
else:
|
||||||
|
if args.generator is not None:
|
||||||
|
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
|
||||||
|
if args.discriminator is not None:
|
||||||
|
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
|
||||||
|
|
||||||
generator = generator.to(device)
|
generator = generator.to(device)
|
||||||
discriminator = discriminator.to(device)
|
discriminator = discriminator.to(device)
|
||||||
|
|
||||||
if args.generator is not None:
|
|
||||||
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
|
|
||||||
if args.discriminator is not None:
|
|
||||||
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
|
|
||||||
|
|
||||||
# Loss
|
# Loss
|
||||||
criterion_g = nn.BCEWithLogitsLoss()
|
criterion_g = nn.BCEWithLogitsLoss()
|
||||||
criterion_d = nn.BCEWithLogitsLoss()
|
criterion_d = nn.BCEWithLogitsLoss()
|
||||||
@ -129,9 +95,6 @@ optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.99
|
|||||||
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
|
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
|
||||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
||||||
|
|
||||||
models_dir = "models"
|
|
||||||
os.makedirs(models_dir, exist_ok=True)
|
|
||||||
|
|
||||||
def start_training():
|
def start_training():
|
||||||
generator_epochs = 5000
|
generator_epochs = 5000
|
||||||
for generator_epoch in range(generator_epochs):
|
for generator_epoch in range(generator_epochs):
|
||||||
@ -154,12 +117,28 @@ def start_training():
|
|||||||
|
|
||||||
# ========= DISCRIMINATOR =========
|
# ========= DISCRIMINATOR =========
|
||||||
discriminator.train()
|
discriminator.train()
|
||||||
d_loss = discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
|
d_loss = discriminator_train(
|
||||||
|
high_quality_sample,
|
||||||
|
low_quality_sample,
|
||||||
|
real_labels,
|
||||||
|
fake_labels,
|
||||||
|
discriminator,
|
||||||
|
generator,
|
||||||
|
criterion_d,
|
||||||
|
optimizer_d
|
||||||
|
)
|
||||||
|
|
||||||
# ========= GENERATOR =========
|
# ========= GENERATOR =========
|
||||||
generator.train()
|
generator.train()
|
||||||
#generator_output, combined_loss, adversarial_loss, mfcc_l = generator_train(low_quality_sample, high_quality_sample, real_labels)
|
generator_output, adversarial_loss = generator_train(
|
||||||
generator_output, adversarial_loss = generator_train(low_quality_sample, high_quality_sample, real_labels)
|
low_quality_sample,
|
||||||
|
high_quality_sample,
|
||||||
|
real_labels,
|
||||||
|
generator,
|
||||||
|
discriminator,
|
||||||
|
criterion_g,
|
||||||
|
optimizer_g
|
||||||
|
)
|
||||||
|
|
||||||
if debug:
|
if debug:
|
||||||
print(d_loss, adversarial_loss)
|
print(d_loss, adversarial_loss)
|
||||||
@ -173,17 +152,19 @@ def start_training():
|
|||||||
|
|
||||||
new_epoch = generator_epoch+epoch
|
new_epoch = generator_epoch+epoch
|
||||||
|
|
||||||
if generator_epoch % 10 == 0:
|
if generator_epoch % 25 == 0:
|
||||||
print(f"Saved epoch {new_epoch}!")
|
print(f"Saved epoch {new_epoch}!")
|
||||||
torchaudio.save(f"./output/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
||||||
torchaudio.save(f"./output/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
|
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
|
||||||
torchaudio.save(f"./output/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
|
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
|
||||||
|
|
||||||
if debug:
|
if debug:
|
||||||
print(generator.state_dict().keys())
|
print(generator.state_dict().keys())
|
||||||
print(discriminator.state_dict().keys())
|
print(discriminator.state_dict().keys())
|
||||||
torch.save(discriminator.state_dict(), f"{models_dir}/discriminator_epoch_{new_epoch}.pt")
|
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
|
||||||
torch.save(generator.state_dict(), f"{models_dir}/generator_epoch_{new_epoch}.pt")
|
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
|
||||||
|
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
|
||||||
|
|
||||||
|
|
||||||
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
|
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
|
||||||
torch.save(generator, "models/epoch-5000-generator.pt")
|
torch.save(generator, "models/epoch-5000-generator.pt")
|
||||||
|
55
training_utils.py
Normal file
55
training_utils.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
|
||||||
|
import torchaudio
|
||||||
|
|
||||||
|
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
|
||||||
|
mfccs_true = mfcc_transform(y_true)
|
||||||
|
mfccs_pred = mfcc_transform(y_pred)
|
||||||
|
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
|
||||||
|
mfccs_true = mfccs_true[:, :, :min_len]
|
||||||
|
mfccs_pred = mfccs_pred[:, :, :min_len]
|
||||||
|
loss = torch.mean((mfccs_true - mfccs_pred)**2)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
# Forward pass for real samples
|
||||||
|
discriminator_decision_from_real = discriminator(high_quality[0])
|
||||||
|
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
||||||
|
|
||||||
|
# Forward pass for fake samples (from generator output)
|
||||||
|
generator_output = generator(low_quality[0])
|
||||||
|
discriminator_decision_from_fake = discriminator(generator_output.detach())
|
||||||
|
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels)
|
||||||
|
|
||||||
|
# Combine real and fake losses
|
||||||
|
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
||||||
|
|
||||||
|
# Backward pass and optimization
|
||||||
|
d_loss.backward()
|
||||||
|
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
return d_loss
|
||||||
|
|
||||||
|
def generator_train(low_quality, high_quality, real_labels, generator, discriminator, criterion, optimizer):
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
# Forward pass for fake samples (from generator output)
|
||||||
|
generator_output = generator(low_quality[0])
|
||||||
|
|
||||||
|
#mfcc_l = gpu_mfcc_loss(high_quality[0], generator_output)
|
||||||
|
|
||||||
|
discriminator_decision = discriminator(generator_output)
|
||||||
|
adversarial_loss = criterion(discriminator_decision, real_labels)
|
||||||
|
|
||||||
|
#combined_loss = adversarial_loss + 0.5 * mfcc_l
|
||||||
|
|
||||||
|
adversarial_loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
#return (generator_output, combined_loss, adversarial_loss, mfcc_l)
|
||||||
|
return (generator_output, adversarial_loss)
|
Loading…
Reference in New Issue
Block a user