Merge new-arch, because it has proven to give the best results #1

Merged
NikkeDoy merged 14 commits from new-arch into main 2025-04-30 23:47:41 +03:00
3 changed files with 137 additions and 73 deletions
Showing only changes of commit b6d16e4f11 - Show all commits

28
file_utils.py Normal file
View File

@ -0,0 +1,28 @@
import json
filepath = "my_data.json"
def write_data(filepath, data):
try:
with open(filepath, 'w') as f:
json.dump(data, f, indent=4) # Use indent for pretty formatting
print(f"Data written to '{filepath}'")
except Exception as e:
print(f"Error writing to file: {e}")
def read_data(filepath):
try:
with open(filepath, 'r') as f:
data = json.load(f)
print(f"Data read from '{filepath}'")
return data
except FileNotFoundError:
print(f"File not found: {filepath}")
return None
except json.JSONDecodeError:
print(f"Error decoding JSON from file: {filepath}")
return None
except Exception as e:
print(f"Error reading from file: {e}")
return None

View File

@ -20,6 +20,9 @@ from data import AudioDataset
from generator import SISUGenerator from generator import SISUGenerator
from discriminator import SISUDiscriminator from discriminator import SISUDiscriminator
from training_utils import discriminator_train, generator_train
import file_utils as Data
import torchaudio.transforms as T import torchaudio.transforms as T
# Init script argument parser # Init script argument parser
@ -31,92 +34,55 @@ parser.add_argument("--discriminator", type=str, default=None,
parser.add_argument("--device", type=str, default="cpu", help="Select device") parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning") parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
parser.add_argument("--debug", action="store_true", help="Print debug logs") parser.add_argument("--debug", action="store_true", help="Print debug logs")
parser.add_argument("--continue_training", type=bool, default=False, help="Continue training using temp_generator and temp_discriminator models")
args = parser.parse_args() args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu") device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}") print(f"Using device: {device}")
mfcc_transform = T.MFCC( # mfcc_transform = T.MFCC(
sample_rate=44100, # sample_rate=44100,
n_mfcc=20, # n_mfcc=20,
melkwargs={'n_fft': 2048, 'hop_length': 256} # melkwargs={'n_fft': 2048, 'hop_length': 256}
).to(device) # ).to(device)
def gpu_mfcc_loss(y_true, y_pred):
mfccs_true = mfcc_transform(y_true)
mfccs_pred = mfcc_transform(y_pred)
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len]
loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
optimizer_d.zero_grad()
# Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality[0])
d_loss_real = criterion_d(discriminator_decision_from_real, real_labels)
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output.detach())
d_loss_fake = criterion_d(discriminator_decision_from_fake, fake_labels)
# Combine real and fake losses
d_loss = (d_loss_real + d_loss_fake) / 2.0
# Backward pass and optimization
d_loss.backward()
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer_d.step()
return d_loss
def generator_train(low_quality, high_quality, real_labels):
optimizer_g.zero_grad()
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
#mfcc_l = gpu_mfcc_loss(high_quality[0], generator_output)
discriminator_decision = discriminator(generator_output)
adversarial_loss = criterion_g(discriminator_decision, real_labels)
#combined_loss = adversarial_loss + 0.5 * mfcc_l
adversarial_loss.backward()
optimizer_g.step()
#return (generator_output, combined_loss, adversarial_loss, mfcc_l)
return (generator_output, adversarial_loss)
debug = args.debug debug = args.debug
# Initialize dataset and dataloader # Initialize dataset and dataloader
dataset_dir = './dataset/good' dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, device) dataset = AudioDataset(dataset_dir, device)
models_dir = "models"
os.makedirs(models_dir, exist_ok=True)
audio_output_dir = "output"
os.makedirs(audio_output_dir, exist_ok=True)
# ========= SINGLE ========= # ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=12, shuffle=True) train_data_loader = DataLoader(dataset, batch_size=12, shuffle=True)
# Initialize models and move them to device
# ========= MODELS =========
generator = SISUGenerator() generator = SISUGenerator()
discriminator = SISUDiscriminator() discriminator = SISUDiscriminator()
epoch: int = args.epoch epoch: int = args.epoch
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
generator = generator.to(device) if args.continue_training:
discriminator = discriminator.to(device) generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
epoch = epoch_from_file["epoch"] + 1
else:
if args.generator is not None: if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True)) generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
if args.discriminator is not None: if args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True)) discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
generator = generator.to(device)
discriminator = discriminator.to(device)
# Loss # Loss
criterion_g = nn.BCEWithLogitsLoss() criterion_g = nn.BCEWithLogitsLoss()
criterion_d = nn.BCEWithLogitsLoss() criterion_d = nn.BCEWithLogitsLoss()
@ -129,9 +95,6 @@ optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.99
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5) scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5) scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
models_dir = "models"
os.makedirs(models_dir, exist_ok=True)
def start_training(): def start_training():
generator_epochs = 5000 generator_epochs = 5000
for generator_epoch in range(generator_epochs): for generator_epoch in range(generator_epochs):
@ -154,12 +117,28 @@ def start_training():
# ========= DISCRIMINATOR ========= # ========= DISCRIMINATOR =========
discriminator.train() discriminator.train()
d_loss = discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels) d_loss = discriminator_train(
high_quality_sample,
low_quality_sample,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
# ========= GENERATOR ========= # ========= GENERATOR =========
generator.train() generator.train()
#generator_output, combined_loss, adversarial_loss, mfcc_l = generator_train(low_quality_sample, high_quality_sample, real_labels) generator_output, adversarial_loss = generator_train(
generator_output, adversarial_loss = generator_train(low_quality_sample, high_quality_sample, real_labels) low_quality_sample,
high_quality_sample,
real_labels,
generator,
discriminator,
criterion_g,
optimizer_g
)
if debug: if debug:
print(d_loss, adversarial_loss) print(d_loss, adversarial_loss)
@ -173,17 +152,19 @@ def start_training():
new_epoch = generator_epoch+epoch new_epoch = generator_epoch+epoch
if generator_epoch % 10 == 0: if generator_epoch % 25 == 0:
print(f"Saved epoch {new_epoch}!") print(f"Saved epoch {new_epoch}!")
torchaudio.save(f"./output/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again. torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1]) torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1]) torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
if debug: if debug:
print(generator.state_dict().keys()) print(generator.state_dict().keys())
print(discriminator.state_dict().keys()) print(discriminator.state_dict().keys())
torch.save(discriminator.state_dict(), f"{models_dir}/discriminator_epoch_{new_epoch}.pt") torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
torch.save(generator.state_dict(), f"{models_dir}/generator_epoch_{new_epoch}.pt") torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
torch.save(discriminator, "models/epoch-5000-discriminator.pt") torch.save(discriminator, "models/epoch-5000-discriminator.pt")
torch.save(generator, "models/epoch-5000-generator.pt") torch.save(generator, "models/epoch-5000-generator.pt")

55
training_utils.py Normal file
View File

@ -0,0 +1,55 @@
import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
mfccs_true = mfcc_transform(y_true)
mfccs_pred = mfcc_transform(y_pred)
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len]
loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
optimizer.zero_grad()
# Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality[0])
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output.detach())
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels)
# Combine real and fake losses
d_loss = (d_loss_real + d_loss_fake) / 2.0
# Backward pass and optimization
d_loss.backward()
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer.step()
return d_loss
def generator_train(low_quality, high_quality, real_labels, generator, discriminator, criterion, optimizer):
optimizer.zero_grad()
# Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0])
#mfcc_l = gpu_mfcc_loss(high_quality[0], generator_output)
discriminator_decision = discriminator(generator_output)
adversarial_loss = criterion(discriminator_decision, real_labels)
#combined_loss = adversarial_loss + 0.5 * mfcc_l
adversarial_loss.backward()
optimizer.step()
#return (generator_output, combined_loss, adversarial_loss, mfcc_l)
return (generator_output, adversarial_loss)