Merge new-arch, because it has proven to give the best results #1

Merged
NikkeDoy merged 14 commits from new-arch into main 2025-04-30 23:47:41 +03:00
5 changed files with 70 additions and 44 deletions
Showing only changes of commit 9394bc6c5a - Show all commits

View File

@ -18,6 +18,7 @@ SISU (Super Ingenious Sound Upscaler) is a project that uses GANs (Generative Ad
1. **Set Up**:
- Make sure you have Python installed (version 3.8 or higher).
- Install needed packages: `pip install -r requirements.txt`
- Install current version of PyTorch (CUDA/ROCm/What ever your device supports)
2. **Prepare Audio Data**:
- Put your audio files in the `dataset/good` folder.

View File

@ -2,23 +2,34 @@ import torch
import torch.nn as nn
import torch.nn.utils as utils
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True):
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True):
padding = (kernel_size // 2) * dilation
conv_layer = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)
conv_layer = nn.Conv1d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding
)
if spectral_norm:
conv_layer = utils.spectral_norm(conv_layer)
return nn.Sequential(
conv_layer,
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm1d(out_channels)
)
layers = [conv_layer]
layers.append(nn.LeakyReLU(0.2, inplace=True))
if use_instance_norm:
layers.append(nn.InstanceNorm1d(out_channels))
return nn.Sequential(*layers)
class AttentionBlock(nn.Module):
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(),
nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid()
)
@ -28,31 +39,25 @@ class AttentionBlock(nn.Module):
return x * attention_weights
class SISUDiscriminator(nn.Module):
def __init__(self, layers=4): #Increased base layer count
def __init__(self, base_channels=64):
super(SISUDiscriminator, self).__init__()
layers = base_channels
self.model = nn.Sequential(
discriminator_block(1, layers, kernel_size=3, stride=1), #Aggressive downsampling
discriminator_block(layers, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
#AttentionBlock(layers * 4), #Added attention
#discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
#AttentionBlock(layers * 8), #Added attention
#discriminator_block(layers * 8, layers * 16, kernel_size=5, dilation=8),
#discriminator_block(layers * 16, layers * 16, kernel_size=3, dilation=1),
#discriminator_block(layers * 16, layers * 8, kernel_size=3, dilation=2),
#discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=1),
discriminator_block(layers * 4, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 2, layers, kernel_size=3, stride=1),
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False) #last layer no spectral norm.
discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False),
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True),
AttentionBlock(layers * 4),
discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False)
)
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.model(x)
x = self.global_avg_pool(x)
x = x.view(-1, 1)
x = self.sigmoid(x)
x = x.view(x.size(0), -1)
return x

View File

@ -1,18 +1,28 @@
import torch
import torch.nn as nn
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
return nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
nn.BatchNorm1d(out_channels),
nn.Conv1d(
in_channels,
out_channels,
kernel_size=kernel_size,
dilation=dilation,
padding=(kernel_size // 2) * dilation
),
nn.InstanceNorm1d(out_channels),
nn.PReLU()
)
class AttentionBlock(nn.Module):
"""
Simple Channel Attention Block. Learns to weight channels based on their importance.
"""
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(),
nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid()
)
@ -24,7 +34,11 @@ class AttentionBlock(nn.Module):
class ResidualInResidualBlock(nn.Module):
def __init__(self, channels, num_convs=3):
super(ResidualInResidualBlock, self).__init__()
self.conv_layers = nn.Sequential(*[conv_block(channels, channels) for _ in range(num_convs)])
self.conv_layers = nn.Sequential(
*[conv_block(channels, channels) for _ in range(num_convs)]
)
self.attention = AttentionBlock(channels)
def forward(self, x):
@ -34,19 +48,27 @@ class ResidualInResidualBlock(nn.Module):
return x + residual
class SISUGenerator(nn.Module):
def __init__(self, layer=4, num_rirb=4): #increased base layer and rirb amounts
def __init__(self, channels=64, num_rirb=8, alpha=1.0):
super(SISUGenerator, self).__init__()
self.alpha = alpha
self.conv1 = nn.Sequential(
nn.Conv1d(1, layer, kernel_size=7, padding=3),
nn.BatchNorm1d(layer),
nn.Conv1d(1, channels, kernel_size=7, padding=3),
nn.InstanceNorm1d(channels),
nn.PReLU(),
)
self.rir_blocks = nn.Sequential(*[ResidualInResidualBlock(layer) for _ in range(num_rirb)])
self.final_layer = nn.Conv1d(layer, 1, kernel_size=3, padding=1)
self.rir_blocks = nn.Sequential(
*[ResidualInResidualBlock(channels) for _ in range(num_rirb)]
)
self.final_layer = nn.Conv1d(channels, 1, kernel_size=3, padding=1)
def forward(self, x):
residual = x
residual_input = x
x = self.conv1(x)
x = self.rir_blocks(x)
x = self.final_layer(x)
return x + residual
x_rirb_out = self.rir_blocks(x)
learned_residual = self.final_layer(x_rirb_out)
output = residual_input + self.alpha * learned_residual
return output

View File

@ -5,10 +5,8 @@ MarkupSafe==2.1.5
mpmath==1.3.0
networkx==3.4.2
numpy==2.2.3
pytorch-triton-rocm==3.2.0+git4b3bb1f8
pillow==11.0.0
setuptools==70.2.0
sympy==1.13.3
torch==2.7.0.dev20250226+rocm6.3
torchaudio==2.6.0.dev20250226+rocm6.3
tqdm==4.67.1
typing_extensions==4.12.2

View File

@ -101,7 +101,7 @@ dataset = AudioDataset(dataset_dir, device)
# ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=256, shuffle=True)
train_data_loader = DataLoader(dataset, batch_size=8, shuffle=True)
# Initialize models and move them to device
generator = SISUGenerator()