Merge new-arch, because it has proven to give the best results #1
@ -18,6 +18,7 @@ SISU (Super Ingenious Sound Upscaler) is a project that uses GANs (Generative Ad
|
||||
1. **Set Up**:
|
||||
- Make sure you have Python installed (version 3.8 or higher).
|
||||
- Install needed packages: `pip install -r requirements.txt`
|
||||
- Install current version of PyTorch (CUDA/ROCm/What ever your device supports)
|
||||
|
||||
2. **Prepare Audio Data**:
|
||||
- Put your audio files in the `dataset/good` folder.
|
||||
|
@ -2,23 +2,34 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.utils as utils
|
||||
|
||||
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True):
|
||||
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True):
|
||||
padding = (kernel_size // 2) * dilation
|
||||
conv_layer = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)
|
||||
conv_layer = nn.Conv1d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
dilation=dilation,
|
||||
padding=padding
|
||||
)
|
||||
|
||||
if spectral_norm:
|
||||
conv_layer = utils.spectral_norm(conv_layer)
|
||||
return nn.Sequential(
|
||||
conv_layer,
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.BatchNorm1d(out_channels)
|
||||
)
|
||||
|
||||
layers = [conv_layer]
|
||||
layers.append(nn.LeakyReLU(0.2, inplace=True))
|
||||
|
||||
if use_instance_norm:
|
||||
layers.append(nn.InstanceNorm1d(out_channels))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super(AttentionBlock, self).__init__()
|
||||
self.attention = nn.Sequential(
|
||||
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||
nn.ReLU(),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||
nn.Sigmoid()
|
||||
)
|
||||
@ -28,31 +39,25 @@ class AttentionBlock(nn.Module):
|
||||
return x * attention_weights
|
||||
|
||||
class SISUDiscriminator(nn.Module):
|
||||
def __init__(self, layers=4): #Increased base layer count
|
||||
def __init__(self, base_channels=64):
|
||||
super(SISUDiscriminator, self).__init__()
|
||||
layers = base_channels
|
||||
self.model = nn.Sequential(
|
||||
discriminator_block(1, layers, kernel_size=3, stride=1), #Aggressive downsampling
|
||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2),
|
||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
|
||||
|
||||
#AttentionBlock(layers * 4), #Added attention
|
||||
|
||||
#discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
|
||||
#AttentionBlock(layers * 8), #Added attention
|
||||
#discriminator_block(layers * 8, layers * 16, kernel_size=5, dilation=8),
|
||||
#discriminator_block(layers * 16, layers * 16, kernel_size=3, dilation=1),
|
||||
#discriminator_block(layers * 16, layers * 8, kernel_size=3, dilation=2),
|
||||
#discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=1),
|
||||
discriminator_block(layers * 4, layers * 2, kernel_size=5, stride=2),
|
||||
discriminator_block(layers * 2, layers, kernel_size=3, stride=1),
|
||||
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False) #last layer no spectral norm.
|
||||
discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False),
|
||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True),
|
||||
AttentionBlock(layers * 4),
|
||||
discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
|
||||
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False)
|
||||
)
|
||||
|
||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.model(x)
|
||||
x = self.global_avg_pool(x)
|
||||
x = x.view(-1, 1)
|
||||
x = self.sigmoid(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
return x
|
||||
|
48
generator.py
48
generator.py
@ -1,18 +1,28 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, dilation=dilation, padding=(kernel_size // 2) * dilation),
|
||||
nn.BatchNorm1d(out_channels),
|
||||
nn.Conv1d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=kernel_size,
|
||||
dilation=dilation,
|
||||
padding=(kernel_size // 2) * dilation
|
||||
),
|
||||
nn.InstanceNorm1d(out_channels),
|
||||
nn.PReLU()
|
||||
)
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
Simple Channel Attention Block. Learns to weight channels based on their importance.
|
||||
"""
|
||||
def __init__(self, channels):
|
||||
super(AttentionBlock, self).__init__()
|
||||
self.attention = nn.Sequential(
|
||||
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||
nn.ReLU(),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||
nn.Sigmoid()
|
||||
)
|
||||
@ -24,7 +34,11 @@ class AttentionBlock(nn.Module):
|
||||
class ResidualInResidualBlock(nn.Module):
|
||||
def __init__(self, channels, num_convs=3):
|
||||
super(ResidualInResidualBlock, self).__init__()
|
||||
self.conv_layers = nn.Sequential(*[conv_block(channels, channels) for _ in range(num_convs)])
|
||||
|
||||
self.conv_layers = nn.Sequential(
|
||||
*[conv_block(channels, channels) for _ in range(num_convs)]
|
||||
)
|
||||
|
||||
self.attention = AttentionBlock(channels)
|
||||
|
||||
def forward(self, x):
|
||||
@ -34,19 +48,27 @@ class ResidualInResidualBlock(nn.Module):
|
||||
return x + residual
|
||||
|
||||
class SISUGenerator(nn.Module):
|
||||
def __init__(self, layer=4, num_rirb=4): #increased base layer and rirb amounts
|
||||
def __init__(self, channels=64, num_rirb=8, alpha=1.0):
|
||||
super(SISUGenerator, self).__init__()
|
||||
self.alpha = alpha
|
||||
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.Conv1d(1, layer, kernel_size=7, padding=3),
|
||||
nn.BatchNorm1d(layer),
|
||||
nn.Conv1d(1, channels, kernel_size=7, padding=3),
|
||||
nn.InstanceNorm1d(channels),
|
||||
nn.PReLU(),
|
||||
)
|
||||
self.rir_blocks = nn.Sequential(*[ResidualInResidualBlock(layer) for _ in range(num_rirb)])
|
||||
self.final_layer = nn.Conv1d(layer, 1, kernel_size=3, padding=1)
|
||||
|
||||
self.rir_blocks = nn.Sequential(
|
||||
*[ResidualInResidualBlock(channels) for _ in range(num_rirb)]
|
||||
)
|
||||
|
||||
self.final_layer = nn.Conv1d(channels, 1, kernel_size=3, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
residual_input = x
|
||||
x = self.conv1(x)
|
||||
x = self.rir_blocks(x)
|
||||
x = self.final_layer(x)
|
||||
return x + residual
|
||||
x_rirb_out = self.rir_blocks(x)
|
||||
learned_residual = self.final_layer(x_rirb_out)
|
||||
output = residual_input + self.alpha * learned_residual
|
||||
|
||||
return output
|
||||
|
@ -5,10 +5,8 @@ MarkupSafe==2.1.5
|
||||
mpmath==1.3.0
|
||||
networkx==3.4.2
|
||||
numpy==2.2.3
|
||||
pytorch-triton-rocm==3.2.0+git4b3bb1f8
|
||||
pillow==11.0.0
|
||||
setuptools==70.2.0
|
||||
sympy==1.13.3
|
||||
torch==2.7.0.dev20250226+rocm6.3
|
||||
torchaudio==2.6.0.dev20250226+rocm6.3
|
||||
tqdm==4.67.1
|
||||
typing_extensions==4.12.2
|
||||
|
@ -101,7 +101,7 @@ dataset = AudioDataset(dataset_dir, device)
|
||||
|
||||
# ========= SINGLE =========
|
||||
|
||||
train_data_loader = DataLoader(dataset, batch_size=256, shuffle=True)
|
||||
train_data_loader = DataLoader(dataset, batch_size=8, shuffle=True)
|
||||
|
||||
# Initialize models and move them to device
|
||||
generator = SISUGenerator()
|
||||
|
Loading…
Reference in New Issue
Block a user