Merge new-arch, because it has proven to give the best results #1
66
training.py
66
training.py
@ -21,21 +21,45 @@ from generator import SISUGenerator
|
|||||||
from discriminator import SISUDiscriminator
|
from discriminator import SISUDiscriminator
|
||||||
|
|
||||||
import librosa
|
import librosa
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
def mfcc_loss(y_true, y_pred, sr):
|
def mfcc_loss(y_true, y_pred, sr):
|
||||||
# 1. Ensure sr is a NumPy scalar (not a Tensor)
|
"""Calculates MFCC loss between two audio signals.
|
||||||
if isinstance(sr, torch.Tensor): # Check if it's a Tensor
|
|
||||||
sr = sr.item() # Extract the value as a Python number
|
|
||||||
|
|
||||||
# 2. Convert y_true and y_pred to NumPy arrays
|
Args:
|
||||||
y_true_np = y_true.cpu().detach().numpy()[0] # .cpu() is crucial!
|
y_true: Target audio signal (PyTorch tensor).
|
||||||
|
y_pred: Predicted audio signal (PyTorch tensor).
|
||||||
|
sr: Sample rate (NumPy scalar).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
MFCC loss (PyTorch tensor).
|
||||||
|
"""
|
||||||
|
|
||||||
|
# 1. Ensure sr is a NumPy scalar (not a Tensor)
|
||||||
|
if isinstance(sr, torch.Tensor):
|
||||||
|
sr = sr.item()
|
||||||
|
|
||||||
|
# 2. Convert y_true and y_pred to NumPy arrays (and detach from graph)
|
||||||
|
y_true_np = y_true.cpu().detach().numpy()[0] # .cpu() and .detach() are crucial!
|
||||||
y_pred_np = y_pred.cpu().detach().numpy()[0]
|
y_pred_np = y_pred.cpu().detach().numpy()[0]
|
||||||
|
|
||||||
|
# 3. Dynamically calculate n_fft based on signal length
|
||||||
|
signal_length = min(y_true_np.shape[0], y_pred_np.shape[0]) # Use shortest signal length
|
||||||
|
n_fft = min(2048, 2**int(np.log2(signal_length))) # Power of 2, up to 2048
|
||||||
|
|
||||||
mfccs_true = librosa.feature.mfcc(y=y_true_np, sr=sr, n_mfcc=20)
|
# 4. Calculate MFCCs using adjusted n_fft
|
||||||
mfccs_pred = librosa.feature.mfcc(y=y_pred_np, sr=sr, n_mfcc=20)
|
mfccs_true = librosa.feature.mfcc(y=y_true_np, sr=sr, n_fft=n_fft, n_mfcc=20)
|
||||||
|
mfccs_pred = librosa.feature.mfcc(y=y_pred_np, sr=sr, n_fft=n_fft, n_mfcc=20)
|
||||||
|
|
||||||
# 3. Convert MFCCs back to PyTorch tensors and ensure correct device
|
# 5. Truncate MFCCs to the same length (important!)
|
||||||
|
len_true = mfccs_true.shape[1]
|
||||||
|
len_pred = mfccs_pred.shape[1]
|
||||||
|
min_len = min(len_true, len_pred)
|
||||||
|
|
||||||
|
mfccs_true = mfccs_true[:, :min_len]
|
||||||
|
mfccs_pred = mfccs_pred[:, :min_len]
|
||||||
|
|
||||||
|
# 6. Convert MFCCs back to PyTorch tensors and ensure correct device
|
||||||
mfccs_true = torch.tensor(mfccs_true, device=y_true.device, dtype=torch.float32)
|
mfccs_true = torch.tensor(mfccs_true, device=y_true.device, dtype=torch.float32)
|
||||||
mfccs_pred = torch.tensor(mfccs_pred, device=y_pred.device, dtype=torch.float32)
|
mfccs_pred = torch.tensor(mfccs_pred, device=y_pred.device, dtype=torch.float32)
|
||||||
|
|
||||||
@ -87,6 +111,7 @@ parser.add_argument("--generator", type=str, default=None,
|
|||||||
help="Path to the generator model file")
|
help="Path to the generator model file")
|
||||||
parser.add_argument("--discriminator", type=str, default=None,
|
parser.add_argument("--discriminator", type=str, default=None,
|
||||||
help="Path to the discriminator model file")
|
help="Path to the discriminator model file")
|
||||||
|
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
|
||||||
parser.add_argument("--verbose", action="store_true", help="Increase output verbosity")
|
parser.add_argument("--verbose", action="store_true", help="Increase output verbosity")
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
@ -120,6 +145,8 @@ train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
|
|||||||
generator = SISUGenerator()
|
generator = SISUGenerator()
|
||||||
discriminator = SISUDiscriminator()
|
discriminator = SISUDiscriminator()
|
||||||
|
|
||||||
|
epoch: int = args.epoch
|
||||||
|
|
||||||
if args.generator is not None:
|
if args.generator is not None:
|
||||||
generator.load_state_dict(torch.load(args.generator, weights_only=True))
|
generator.load_state_dict(torch.load(args.generator, weights_only=True))
|
||||||
if args.discriminator is not None:
|
if args.discriminator is not None:
|
||||||
@ -153,7 +180,7 @@ def start_training():
|
|||||||
times_correct = 0
|
times_correct = 0
|
||||||
|
|
||||||
# ========= TRAINING =========
|
# ========= TRAINING =========
|
||||||
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
|
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
|
||||||
# for high_quality_clip, low_quality_clip in train_data_loader:
|
# for high_quality_clip, low_quality_clip in train_data_loader:
|
||||||
high_quality_sample = (high_quality_clip[0].to(device), high_quality_clip[1])
|
high_quality_sample = (high_quality_clip[0].to(device), high_quality_clip[1])
|
||||||
low_quality_sample = (low_quality_clip[0].to(device), low_quality_clip[1])
|
low_quality_sample = (low_quality_clip[0].to(device), low_quality_clip[1])
|
||||||
@ -181,16 +208,19 @@ def start_training():
|
|||||||
low_quality_audio = low_quality_clip
|
low_quality_audio = low_quality_clip
|
||||||
ai_enhanced_audio = (generator_output, high_quality_clip[1])
|
ai_enhanced_audio = (generator_output, high_quality_clip[1])
|
||||||
|
|
||||||
if generator_epoch % 10 == 0:
|
new_epoch = generator_epoch+epoch
|
||||||
print(f"Saved epoch {generator_epoch}!")
|
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
|
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
|
|
||||||
|
|
||||||
torch.save(discriminator.state_dict(), f"{models_dir}/discriminator_epoch_{generator_epoch}.pt")
|
if generator_epoch % 10 == 0:
|
||||||
torch.save(generator.state_dict(), f"{models_dir}/generator_epoch_{generator_epoch}.pt")
|
print(f"Saved epoch {new_epoch}!")
|
||||||
torch.save(discriminator, f"{models_dir}/discriminator_epoch_{generator_epoch}_full.pt")
|
torchaudio.save(f"./output/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
||||||
torch.save(generator, f"{models_dir}/generator_epoch_{generator_epoch}_full.pt")
|
torchaudio.save(f"./output/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
|
||||||
|
torchaudio.save(f"./output/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print(generator.state_dict().keys())
|
||||||
|
print(discriminator.state_dict().keys())
|
||||||
|
torch.save(discriminator.state_dict(), f"{models_dir}/discriminator_epoch_{new_epoch}.pt")
|
||||||
|
torch.save(generator.state_dict(), f"{models_dir}/generator_epoch_{new_epoch}.pt")
|
||||||
|
|
||||||
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
|
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
|
||||||
torch.save(generator, "models/epoch-5000-generator.pt")
|
torch.save(generator, "models/epoch-5000-generator.pt")
|
||||||
|
Loading…
Reference in New Issue
Block a user