Merge new-arch, because it has proven to give the best results #1
@ -6,8 +6,8 @@ def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dila
|
|||||||
padding = (kernel_size // 2) * dilation
|
padding = (kernel_size // 2) * dilation
|
||||||
return nn.Sequential(
|
return nn.Sequential(
|
||||||
utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)),
|
utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)),
|
||||||
nn.BatchNorm1d(out_channels),
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
nn.LeakyReLU(0.2, inplace=True) # Changed activation to LeakyReLU
|
nn.BatchNorm1d(out_channels)
|
||||||
)
|
)
|
||||||
|
|
||||||
class SISUDiscriminator(nn.Module):
|
class SISUDiscriminator(nn.Module):
|
||||||
@ -15,17 +15,16 @@ class SISUDiscriminator(nn.Module):
|
|||||||
super(SISUDiscriminator, self).__init__()
|
super(SISUDiscriminator, self).__init__()
|
||||||
layers = 4 # Increased base layer count
|
layers = 4 # Increased base layer count
|
||||||
self.model = nn.Sequential(
|
self.model = nn.Sequential(
|
||||||
# Initial Convolution
|
discriminator_block(1, layers, kernel_size=7, stride=2), # Initial downsampling
|
||||||
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample
|
discriminator_block(layers, layers * 2, kernel_size=5, stride=2), # Downsampling
|
||||||
|
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2), # Increased dilation
|
||||||
# Core Discriminator Blocks with varied kernels and dilations
|
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=4), # Increased dilation
|
||||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample
|
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=8), # Deeper layer!
|
||||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
|
discriminator_block(layers * 8, layers * 8, kernel_size=5, dilation=1), # Deeper layer!
|
||||||
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=16),
|
discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=2), # Reduced dilation
|
||||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=8),
|
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=1),
|
||||||
discriminator_block(layers * 2, layers, kernel_size=3, dilation=1),
|
discriminator_block(layers * 2, layers, kernel_size=3, stride=1), # Final convolution
|
||||||
# Final Convolution
|
discriminator_block(layers, 1, kernel_size=3, stride=1)
|
||||||
discriminator_block(layers, 1, kernel_size=3, stride=1),
|
|
||||||
)
|
)
|
||||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||||
|
|
||||||
|
96
training.py
96
training.py
@ -10,6 +10,8 @@ import argparse
|
|||||||
|
|
||||||
import math
|
import math
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
from torch.utils.data import random_split
|
from torch.utils.data import random_split
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
@ -18,8 +20,26 @@ from data import AudioDataset
|
|||||||
from generator import SISUGenerator
|
from generator import SISUGenerator
|
||||||
from discriminator import SISUDiscriminator
|
from discriminator import SISUDiscriminator
|
||||||
|
|
||||||
def perceptual_loss(y_true, y_pred):
|
import librosa
|
||||||
return torch.mean((y_true - y_pred) ** 2)
|
|
||||||
|
def mfcc_loss(y_true, y_pred, sr):
|
||||||
|
# 1. Ensure sr is a NumPy scalar (not a Tensor)
|
||||||
|
if isinstance(sr, torch.Tensor): # Check if it's a Tensor
|
||||||
|
sr = sr.item() # Extract the value as a Python number
|
||||||
|
|
||||||
|
# 2. Convert y_true and y_pred to NumPy arrays
|
||||||
|
y_true_np = y_true.cpu().detach().numpy()[0] # .cpu() is crucial!
|
||||||
|
y_pred_np = y_pred.cpu().detach().numpy()[0]
|
||||||
|
|
||||||
|
|
||||||
|
mfccs_true = librosa.feature.mfcc(y=y_true_np, sr=sr, n_mfcc=20)
|
||||||
|
mfccs_pred = librosa.feature.mfcc(y=y_pred_np, sr=sr, n_mfcc=20)
|
||||||
|
|
||||||
|
# 3. Convert MFCCs back to PyTorch tensors and ensure correct device
|
||||||
|
mfccs_true = torch.tensor(mfccs_true, device=y_true.device, dtype=torch.float32)
|
||||||
|
mfccs_pred = torch.tensor(mfccs_pred, device=y_pred.device, dtype=torch.float32)
|
||||||
|
|
||||||
|
return torch.mean((mfccs_true - mfccs_pred)**2)
|
||||||
|
|
||||||
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
|
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
|
||||||
optimizer_d.zero_grad()
|
optimizer_d.zero_grad()
|
||||||
@ -43,17 +63,23 @@ def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
|
|||||||
|
|
||||||
return d_loss
|
return d_loss
|
||||||
|
|
||||||
def generator_train(low_quality, real_labels):
|
def generator_train(low_quality, high_quality, real_labels):
|
||||||
optimizer_g.zero_grad()
|
optimizer_g.zero_grad()
|
||||||
|
|
||||||
# Forward pass for fake samples (from generator output)
|
# Forward pass for fake samples (from generator output)
|
||||||
generator_output = generator(low_quality[0])
|
generator_output = generator(low_quality[0])
|
||||||
discriminator_decision = discriminator(generator_output)
|
|
||||||
g_loss = criterion_g(discriminator_decision, real_labels)
|
|
||||||
|
|
||||||
g_loss.backward()
|
mfcc_l = mfcc_loss(high_quality[0], generator_output, high_quality[1])
|
||||||
|
|
||||||
|
discriminator_decision = discriminator(generator_output)
|
||||||
|
adversarial_loss = criterion_g(discriminator_decision, real_labels)
|
||||||
|
|
||||||
|
combined_loss = adversarial_loss + 0.5 * mfcc_l
|
||||||
|
|
||||||
|
combined_loss.backward()
|
||||||
optimizer_g.step()
|
optimizer_g.step()
|
||||||
return generator_output
|
|
||||||
|
return (generator_output, combined_loss, adversarial_loss, mfcc_l)
|
||||||
|
|
||||||
# Init script argument parser
|
# Init script argument parser
|
||||||
parser = argparse.ArgumentParser(description="Training script")
|
parser = argparse.ArgumentParser(description="Training script")
|
||||||
@ -61,6 +87,7 @@ parser.add_argument("--generator", type=str, default=None,
|
|||||||
help="Path to the generator model file")
|
help="Path to the generator model file")
|
||||||
parser.add_argument("--discriminator", type=str, default=None,
|
parser.add_argument("--discriminator", type=str, default=None,
|
||||||
help="Path to the discriminator model file")
|
help="Path to the discriminator model file")
|
||||||
|
parser.add_argument("--verbose", action="store_true", help="Increase output verbosity")
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
@ -68,6 +95,8 @@ args = parser.parse_args()
|
|||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
print(f"Using device: {device}")
|
print(f"Using device: {device}")
|
||||||
|
|
||||||
|
debug = args.verbose
|
||||||
|
|
||||||
# Initialize dataset and dataloader
|
# Initialize dataset and dataloader
|
||||||
dataset_dir = './dataset/good'
|
dataset_dir = './dataset/good'
|
||||||
dataset = AudioDataset(dataset_dir)
|
dataset = AudioDataset(dataset_dir)
|
||||||
@ -85,7 +114,7 @@ dataset = AudioDataset(dataset_dir)
|
|||||||
|
|
||||||
# ========= SINGLE =========
|
# ========= SINGLE =========
|
||||||
|
|
||||||
train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
|
train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
|
||||||
|
|
||||||
# Initialize models and move them to device
|
# Initialize models and move them to device
|
||||||
generator = SISUGenerator()
|
generator = SISUGenerator()
|
||||||
@ -111,32 +140,10 @@ optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.99
|
|||||||
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
|
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
|
||||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
||||||
|
|
||||||
|
models_dir = "models"
|
||||||
|
os.makedirs(models_dir, exist_ok=True)
|
||||||
|
|
||||||
def start_training():
|
def start_training():
|
||||||
|
|
||||||
# Training loop
|
|
||||||
|
|
||||||
# ========= DISCRIMINATOR PRE-TRAINING =========
|
|
||||||
# discriminator_epochs = 1
|
|
||||||
# for discriminator_epoch in range(discriminator_epochs):
|
|
||||||
|
|
||||||
# # ========= TRAINING =========
|
|
||||||
# for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
|
|
||||||
# high_quality_sample = high_quality_clip[0].to(device)
|
|
||||||
# low_quality_sample = low_quality_clip[0].to(device)
|
|
||||||
|
|
||||||
# scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
|
|
||||||
|
|
||||||
# # ========= LABELS =========
|
|
||||||
# batch_size = high_quality_sample.size(0)
|
|
||||||
# real_labels = torch.ones(batch_size, 1).to(device)
|
|
||||||
# fake_labels = torch.zeros(batch_size, 1).to(device)
|
|
||||||
|
|
||||||
# # ========= DISCRIMINATOR =========
|
|
||||||
# discriminator.train()
|
|
||||||
# discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
|
|
||||||
|
|
||||||
# torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
|
|
||||||
|
|
||||||
generator_epochs = 5000
|
generator_epochs = 5000
|
||||||
for generator_epoch in range(generator_epochs):
|
for generator_epoch in range(generator_epochs):
|
||||||
low_quality_audio = (torch.empty((1)), 1)
|
low_quality_audio = (torch.empty((1)), 1)
|
||||||
@ -158,32 +165,35 @@ def start_training():
|
|||||||
|
|
||||||
# ========= DISCRIMINATOR =========
|
# ========= DISCRIMINATOR =========
|
||||||
discriminator.train()
|
discriminator.train()
|
||||||
discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
|
d_loss = discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
|
||||||
|
|
||||||
# ========= GENERATOR =========
|
# ========= GENERATOR =========
|
||||||
generator.train()
|
generator.train()
|
||||||
generator_output = generator_train(low_quality_sample, real_labels)
|
generator_output, combined_loss, adversarial_loss, mfcc_l = generator_train(low_quality_sample, high_quality_sample, real_labels)
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print(d_loss, combined_loss, adversarial_loss, mfcc_l)
|
||||||
|
scheduler_d.step(d_loss)
|
||||||
|
scheduler_g.step(combined_loss)
|
||||||
|
|
||||||
# ========= SAVE LATEST AUDIO =========
|
# ========= SAVE LATEST AUDIO =========
|
||||||
high_quality_audio = high_quality_clip
|
high_quality_audio = high_quality_clip
|
||||||
low_quality_audio = low_quality_clip
|
low_quality_audio = low_quality_clip
|
||||||
ai_enhanced_audio = (generator_output, high_quality_clip[1])
|
ai_enhanced_audio = (generator_output, high_quality_clip[1])
|
||||||
|
|
||||||
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
|
|
||||||
#print(f"Generator metric {metric}!")
|
|
||||||
#scheduler_g.step(metric)
|
|
||||||
|
|
||||||
if generator_epoch % 10 == 0:
|
if generator_epoch % 10 == 0:
|
||||||
print(f"Saved epoch {generator_epoch}!")
|
print(f"Saved epoch {generator_epoch}!")
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
|
||||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
|
||||||
|
|
||||||
torch.save(discriminator.state_dict(), f"models/current-epoch-discriminator.pt")
|
torch.save(discriminator.state_dict(), f"{models_dir}/discriminator_epoch_{generator_epoch}.pt")
|
||||||
torch.save(generator.state_dict(), f"models/current-epoch-generator.pt")
|
torch.save(generator.state_dict(), f"{models_dir}/generator_epoch_{generator_epoch}.pt")
|
||||||
|
torch.save(discriminator, f"{models_dir}/discriminator_epoch_{generator_epoch}_full.pt")
|
||||||
|
torch.save(generator, f"{models_dir}/generator_epoch_{generator_epoch}_full.pt")
|
||||||
|
|
||||||
torch.save(discriminator.state_dict(), "models/epoch-5000-discriminator.pt")
|
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
|
||||||
torch.save(generator.state_dict(), "models/epoch-5000-generator.pt")
|
torch.save(generator, "models/epoch-5000-generator.pt")
|
||||||
print("Training complete!")
|
print("Training complete!")
|
||||||
|
|
||||||
start_training()
|
start_training()
|
||||||
|
Loading…
Reference in New Issue
Block a user