2 Commits

Author SHA1 Message Date
f928d8c2cf :albemic: | More tests. 2025-03-25 21:51:29 +02:00
54338e55a9 :albemic: | Tests. 2025-03-25 19:50:51 +02:00
3 changed files with 29 additions and 23 deletions

View File

@ -9,7 +9,7 @@ import AudioUtils
class AudioDataset(Dataset): class AudioDataset(Dataset):
audio_sample_rates = [11025] audio_sample_rates = [11025]
MAX_LENGTH = 88200 # Define your desired maximum length here MAX_LENGTH = 44100 # Define your desired maximum length here
def __init__(self, input_dir, device): def __init__(self, input_dir, device):
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')] self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]

View File

@ -31,16 +31,19 @@ class SISUDiscriminator(nn.Module):
def __init__(self, layers=4): #Increased base layer count def __init__(self, layers=4): #Increased base layer count
super(SISUDiscriminator, self).__init__() super(SISUDiscriminator, self).__init__()
self.model = nn.Sequential( self.model = nn.Sequential(
discriminator_block(1, layers, kernel_size=7, stride=4), #Aggressive downsampling discriminator_block(1, layers, kernel_size=3, stride=1), #Aggressive downsampling
discriminator_block(layers, layers * 2, kernel_size=5, stride=2), discriminator_block(layers, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2), discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
AttentionBlock(layers * 8), #Added attention #AttentionBlock(layers * 4), #Added attention
discriminator_block(layers * 8, layers * 16, kernel_size=5, dilation=8),
discriminator_block(layers * 16, layers * 16, kernel_size=3, dilation=1), #discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
discriminator_block(layers * 16, layers * 8, kernel_size=3, dilation=2), #AttentionBlock(layers * 8), #Added attention
discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=1), #discriminator_block(layers * 8, layers * 16, kernel_size=5, dilation=8),
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1), #discriminator_block(layers * 16, layers * 16, kernel_size=3, dilation=1),
#discriminator_block(layers * 16, layers * 8, kernel_size=3, dilation=2),
#discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=1),
discriminator_block(layers * 4, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 2, layers, kernel_size=3, stride=1), discriminator_block(layers * 2, layers, kernel_size=3, stride=1),
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False) #last layer no spectral norm. discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False) #last layer no spectral norm.
) )

View File

@ -30,7 +30,7 @@ parser.add_argument("--discriminator", type=str, default=None,
help="Path to the discriminator model file") help="Path to the discriminator model file")
parser.add_argument("--device", type=str, default="cpu", help="Select device") parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning") parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
parser.add_argument("--verbose", action="store_true", help="Increase output verbosity") parser.add_argument("--debug", action="store_true", help="Print debug logs")
args = parser.parse_args() args = parser.parse_args()
@ -38,9 +38,9 @@ device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}") print(f"Using device: {device}")
mfcc_transform = T.MFCC( mfcc_transform = T.MFCC(
sample_rate=44100, # Adjust to your sample rate sample_rate=44100,
n_mfcc=20, n_mfcc=20,
melkwargs={'n_fft': 2048, 'hop_length': 512} # adjust n_fft and hop_length to your needs. melkwargs={'n_fft': 2048, 'hop_length': 256}
).to(device) ).to(device)
def gpu_mfcc_loss(y_true, y_pred): def gpu_mfcc_loss(y_true, y_pred):
@ -49,7 +49,8 @@ def gpu_mfcc_loss(y_true, y_pred):
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2]) min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len] mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len] mfccs_pred = mfccs_pred[:, :, :min_len]
return torch.mean((mfccs_true - mfccs_pred)**2) loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
def discriminator_train(high_quality, low_quality, real_labels, fake_labels): def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
optimizer_d.zero_grad() optimizer_d.zero_grad()
@ -79,19 +80,20 @@ def generator_train(low_quality, high_quality, real_labels):
# Forward pass for fake samples (from generator output) # Forward pass for fake samples (from generator output)
generator_output = generator(low_quality[0]) generator_output = generator(low_quality[0])
mfcc_l = gpu_mfcc_loss(high_quality[0], generator_output) #mfcc_l = gpu_mfcc_loss(high_quality[0], generator_output)
discriminator_decision = discriminator(generator_output) discriminator_decision = discriminator(generator_output)
adversarial_loss = criterion_g(discriminator_decision, real_labels) adversarial_loss = criterion_g(discriminator_decision, real_labels)
combined_loss = adversarial_loss + 0.5 * mfcc_l #combined_loss = adversarial_loss + 0.5 * mfcc_l
combined_loss.backward() adversarial_loss.backward()
optimizer_g.step() optimizer_g.step()
return (generator_output, combined_loss, adversarial_loss, mfcc_l) #return (generator_output, combined_loss, adversarial_loss, mfcc_l)
return (generator_output, adversarial_loss)
debug = args.verbose debug = args.debug
# Initialize dataset and dataloader # Initialize dataset and dataloader
dataset_dir = './dataset/good' dataset_dir = './dataset/good'
@ -99,7 +101,7 @@ dataset = AudioDataset(dataset_dir, device)
# ========= SINGLE ========= # ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=128, shuffle=True) train_data_loader = DataLoader(dataset, batch_size=256, shuffle=True)
# Initialize models and move them to device # Initialize models and move them to device
generator = SISUGenerator() generator = SISUGenerator()
@ -156,12 +158,13 @@ def start_training():
# ========= GENERATOR ========= # ========= GENERATOR =========
generator.train() generator.train()
generator_output, combined_loss, adversarial_loss, mfcc_l = generator_train(low_quality_sample, high_quality_sample, real_labels) #generator_output, combined_loss, adversarial_loss, mfcc_l = generator_train(low_quality_sample, high_quality_sample, real_labels)
generator_output, adversarial_loss = generator_train(low_quality_sample, high_quality_sample, real_labels)
if debug: if debug:
print(d_loss, combined_loss, adversarial_loss, mfcc_l) print(d_loss, adversarial_loss)
scheduler_d.step(d_loss) scheduler_d.step(d_loss)
scheduler_g.step(combined_loss) scheduler_g.step(adversarial_loss)
# ========= SAVE LATEST AUDIO ========= # ========= SAVE LATEST AUDIO =========
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0]) high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0])