1 Commits

13 changed files with 423 additions and 658 deletions

View File

@@ -1,97 +1,18 @@
import torch
import torch.nn.functional as F
def stereo_tensor_to_mono(waveform: torch.Tensor) -> torch.Tensor:
"""
Convert stereo (C, N) to mono (1, N). Ensures a channel dimension.
"""
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0) # (N,) -> (1, N)
def stereo_tensor_to_mono(waveform):
if waveform.shape[0] > 1:
mono_waveform = torch.mean(waveform, dim=0, keepdim=True) # (1, N)
# Average across channels
mono_waveform = torch.mean(waveform, dim=0, keepdim=True)
else:
# Already mono
mono_waveform = waveform
return mono_waveform
def stretch_tensor(tensor, target_length):
scale_factor = target_length / tensor.size(1)
def stretch_tensor(tensor: torch.Tensor, target_length: int) -> torch.Tensor:
"""
Stretch audio along time dimension to target_length.
Input assumed (1, N). Returns (1, target_length).
"""
if tensor.dim() == 1:
tensor = tensor.unsqueeze(0) # ensure (1, N)
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
tensor = tensor.unsqueeze(0) # (1, 1, N) for interpolate
stretched = F.interpolate(
tensor, size=target_length, mode="linear", align_corners=False
)
return stretched.squeeze(0) # back to (1, target_length)
def pad_tensor(audio_tensor: torch.Tensor, target_length: int = 128) -> torch.Tensor:
"""
Pad to fixed length. Input assumed (1, N). Returns (1, target_length).
"""
if audio_tensor.dim() == 1:
audio_tensor = audio_tensor.unsqueeze(0)
current_length = audio_tensor.shape[-1]
if current_length < target_length:
padding_needed = target_length - current_length
padding_tuple = (0, padding_needed)
padded_audio_tensor = F.pad(
audio_tensor, padding_tuple, mode="constant", value=0
)
else:
padded_audio_tensor = audio_tensor[..., :target_length] # crop if too long
return padded_audio_tensor
def split_audio(
audio_tensor: torch.Tensor, chunk_size: int = 128
) -> list[torch.Tensor]:
"""
Split into chunks of (1, chunk_size).
"""
if not isinstance(chunk_size, int) or chunk_size <= 0:
raise ValueError("chunk_size must be a positive integer.")
if audio_tensor.dim() == 1:
audio_tensor = audio_tensor.unsqueeze(0)
num_samples = audio_tensor.shape[-1]
if num_samples == 0:
return []
chunks = list(torch.split(audio_tensor, chunk_size, dim=-1))
return chunks
def reconstruct_audio(chunks: list[torch.Tensor]) -> torch.Tensor:
"""
Reconstruct audio from chunks. Returns (1, N).
"""
if not chunks:
return torch.empty(1, 0)
chunks = [c if c.dim() == 2 else c.unsqueeze(0) for c in chunks]
try:
reconstructed_tensor = torch.cat(chunks, dim=-1)
except RuntimeError as e:
raise RuntimeError(
f"Failed to concatenate audio chunks. Ensure chunks have compatible shapes "
f"for concatenation along dim -1. Original error: {e}"
)
return reconstructed_tensor
def normalize(audio_tensor: torch.Tensor, eps: float = 1e-8) -> torch.Tensor:
max_val = torch.max(torch.abs(audio_tensor))
if max_val < eps:
return audio_tensor # silence, skip normalization
return audio_tensor / max_val
return tensor

View File

97
app.py
View File

@@ -1,97 +0,0 @@
import argparse
import torch
import torchaudio
import torchcodec
import tqdm
import AudioUtils
from generator import SISUGenerator
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--model", type=str, help="Model to use for upscaling")
parser.add_argument(
"--clip_length",
type=int,
default=16384,
help="Internal clip length, leave unspecified if unsure",
)
parser.add_argument(
"--sample_rate", type=int, default=44100, help="Output clip sample rate"
)
parser.add_argument(
"--bitrate",
type=int,
default=192000,
help="Output clip bitrate",
)
parser.add_argument("-i", "--input", type=str, help="Input audio file")
parser.add_argument("-o", "--output", type=str, help="Output audio file")
args = parser.parse_args()
if args.sample_rate < 8000:
print(
"Sample rate cannot be lower than 8000! (44100 is recommended for base models)"
)
exit()
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
generator = SISUGenerator().to(device)
generator = torch.compile(generator)
models_dir = args.model
clip_length = args.clip_length
input_audio = args.input
output_audio = args.output
if models_dir:
ckpt = torch.load(models_dir, map_location=device)
generator.load_state_dict(ckpt["G"])
else:
print(
"Generator model (--model) isn't specified. Do you have the trained model? If not, you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)"
)
def start():
# To Mono!
decoder = torchcodec.decoders.AudioDecoder(input_audio)
decoded_samples = decoder.get_all_samples()
audio = decoded_samples.data
original_sample_rate = decoded_samples.sample_rate
audio = AudioUtils.stereo_tensor_to_mono(audio)
audio = AudioUtils.normalize(audio)
resample_transform = torchaudio.transforms.Resample(
original_sample_rate, args.sample_rate
)
audio = resample_transform(audio)
splitted_audio = AudioUtils.split_audio(audio, clip_length)
splitted_audio_on_device = [t.to(device) for t in splitted_audio]
processed_audio = []
for clip in tqdm.tqdm(splitted_audio_on_device, desc="Processing..."):
processed_audio.append(generator(clip))
reconstructed_audio = AudioUtils.reconstruct_audio(processed_audio)
print(f"Saving {output_audio}!")
torchaudio.save_with_torchcodec(
uri=output_audio,
src=reconstructed_audio,
sample_rate=args.sample_rate,
channels_first=True,
compression=args.bitrate,
)
start()

110
data.py
View File

@@ -1,79 +1,53 @@
from torch.utils.data import Dataset
import torch.nn.functional as F
import torch
import torchaudio
import os
import random
import torchaudio
import torchcodec.decoders as decoders
import tqdm
from torch.utils.data import Dataset
import torchaudio.transforms as T
import AudioUtils
class AudioDataset(Dataset):
audio_sample_rates = [11025]
MAX_LENGTH = 44100 # Define your desired maximum length here
def __init__(self, input_dir, clip_length: int = 8000, normalize: bool = True):
self.clip_length = clip_length
self.normalize = normalize
input_files = [
os.path.join(input_dir, f)
for f in os.listdir(input_dir)
if os.path.isfile(os.path.join(input_dir, f))
and f.lower().endswith((".wav", ".mp3", ".flac"))
]
data = []
for audio_clip in tqdm.tqdm(
input_files, desc=f"Processing {len(input_files)} audio file(s)"
):
decoder = decoders.AudioDecoder(audio_clip)
decoded_samples = decoder.get_all_samples()
audio = decoded_samples.data.float() # ensure float32
original_sample_rate = decoded_samples.sample_rate
audio = AudioUtils.stereo_tensor_to_mono(audio)
if normalize:
audio = AudioUtils.normalize(audio)
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(
original_sample_rate, mangled_sample_rate
)
resample_transform_high = torchaudio.transforms.Resample(
mangled_sample_rate, original_sample_rate
)
low_audio = resample_transform_high(resample_transform_low(audio))
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length)
splitted_low_quality_audio = AudioUtils.split_audio(low_audio, clip_length)
if not splitted_high_quality_audio or not splitted_low_quality_audio:
continue # skip empty or invalid clips
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(
splitted_high_quality_audio[-1], clip_length
)
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(
splitted_low_quality_audio[-1], clip_length
)
for high_quality_data, low_quality_data in zip(
splitted_high_quality_audio, splitted_low_quality_audio
):
data.append(
(
(high_quality_data, low_quality_data),
(original_sample_rate, mangled_sample_rate),
)
)
self.audio_data = data
def __init__(self, input_dir, device):
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')]
self.device = device
def __len__(self):
return len(self.audio_data)
return len(self.input_files)
def __getitem__(self, idx):
return self.audio_data[idx]
# Load high-quality audio
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
# Generate low-quality audio with random downsampling
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
low_quality_audio = resample_transform_low(high_quality_audio)
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
low_quality_audio = resample_transform_high(low_quality_audio)
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio)
# Pad or truncate high-quality audio
if high_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - high_quality_audio.shape[1]
high_quality_audio = F.pad(high_quality_audio, (0, padding))
elif high_quality_audio.shape[1] > self.MAX_LENGTH:
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH]
# Pad or truncate low-quality audio
if low_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - low_quality_audio.shape[1]
low_quality_audio = F.pad(low_quality_audio, (0, padding))
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
high_quality_audio = high_quality_audio.to(self.device)
low_quality_audio = low_quality_audio.to(self.device)
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)

View File

@@ -1,16 +1,8 @@
import torch
import torch.nn as nn
import torch.nn.utils as utils
def discriminator_block(
in_channels,
out_channels,
kernel_size=3,
stride=1,
dilation=1,
spectral_norm=True,
use_instance_norm=True,
):
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True):
padding = (kernel_size // 2) * dilation
conv_layer = nn.Conv1d(
in_channels,
@@ -18,7 +10,7 @@ def discriminator_block(
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
padding=padding
)
if spectral_norm:
@@ -32,7 +24,6 @@ def discriminator_block(
return nn.Sequential(*layers)
class AttentionBlock(nn.Module):
def __init__(self, channels):
super(AttentionBlock, self).__init__()
@@ -40,30 +31,27 @@ class AttentionBlock(nn.Module):
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid(),
nn.Sigmoid()
)
def forward(self, x):
attention_weights = self.attention(x)
return x * attention_weights
class SISUDiscriminator(nn.Module):
def __init__(self, layers=32):
def __init__(self, base_channels=16):
super(SISUDiscriminator, self).__init__()
layers = base_channels
self.model = nn.Sequential(
discriminator_block(1, layers, kernel_size=7, stride=1),
discriminator_block(layers, layers * 2, kernel_size=5, stride=2),
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2),
discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False),
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True),
AttentionBlock(layers * 4),
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
discriminator_block(layers * 8, layers * 2, kernel_size=5, stride=2),
discriminator_block(
layers * 2,
1,
spectral_norm=False,
use_instance_norm=False,
),
discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False)
)
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)

28
file_utils.py Normal file
View File

@@ -0,0 +1,28 @@
import json
filepath = "my_data.json"
def write_data(filepath, data):
try:
with open(filepath, 'w') as f:
json.dump(data, f, indent=4) # Use indent for pretty formatting
print(f"Data written to '{filepath}'")
except Exception as e:
print(f"Error writing to file: {e}")
def read_data(filepath):
try:
with open(filepath, 'r') as f:
data = json.load(f)
print(f"Data read from '{filepath}'")
return data
except FileNotFoundError:
print(f"File not found: {filepath}")
return None
except json.JSONDecodeError:
print(f"Error decoding JSON from file: {filepath}")
return None
except Exception as e:
print(f"Error reading from file: {e}")
return None

View File

@@ -1,7 +1,6 @@
import torch
import torch.nn as nn
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
return nn.Sequential(
nn.Conv1d(
@@ -9,32 +8,29 @@ def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
out_channels,
kernel_size=kernel_size,
dilation=dilation,
padding=(kernel_size // 2) * dilation,
padding=(kernel_size // 2) * dilation
),
nn.InstanceNorm1d(out_channels),
nn.PReLU(),
nn.PReLU()
)
class AttentionBlock(nn.Module):
"""
Simple Channel Attention Block. Learns to weight channels based on their importance.
"""
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid(),
nn.Sigmoid()
)
def forward(self, x):
attention_weights = self.attention(x)
return x * attention_weights
class ResidualInResidualBlock(nn.Module):
def __init__(self, channels, num_convs=3):
super(ResidualInResidualBlock, self).__init__()
@@ -51,9 +47,8 @@ class ResidualInResidualBlock(nn.Module):
x = self.attention(x)
return x + residual
class SISUGenerator(nn.Module):
def __init__(self, channels=16, num_rirb=4, alpha=1):
def __init__(self, channels=16, num_rirb=4, alpha=1.0):
super(SISUGenerator, self).__init__()
self.alpha = alpha
@@ -67,9 +62,7 @@ class SISUGenerator(nn.Module):
*[ResidualInResidualBlock(channels) for _ in range(num_rirb)]
)
self.final_layer = nn.Sequential(
nn.Conv1d(channels, 1, kernel_size=3, padding=1), nn.Tanh()
)
self.final_layer = nn.Conv1d(channels, 1, kernel_size=3, padding=1)
def forward(self, x):
residual_input = x
@@ -78,4 +71,4 @@ class SISUGenerator(nn.Module):
learned_residual = self.final_layer(x_rirb_out)
output = residual_input + self.alpha * learned_residual
return torch.tanh(output)
return output

12
requirements.txt Normal file
View File

@@ -0,0 +1,12 @@
filelock==3.16.1
fsspec==2024.10.0
Jinja2==3.1.4
MarkupSafe==2.1.5
mpmath==1.3.0
networkx==3.4.2
numpy==2.2.3
pillow==11.0.0
setuptools==70.2.0
sympy==1.13.3
tqdm==4.67.1
typing_extensions==4.12.2

View File

@@ -1,245 +1,194 @@
import argparse
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchaudio
import tqdm
from accelerate import Accelerator
from torch.utils.data import DataLoader, DistributedSampler
import argparse
import math
import os
from torch.utils.data import random_split
from torch.utils.data import DataLoader
import AudioUtils
from data import AudioDataset
from discriminator import SISUDiscriminator
from generator import SISUGenerator
from utils.TrainingTools import discriminator_train, generator_train
from discriminator import SISUDiscriminator
# ---------------------------
# Argument parsing
# ---------------------------
parser = argparse.ArgumentParser(description="Training script (safer defaults)")
parser.add_argument("--resume", action="store_true", help="Resume training")
parser.add_argument(
"--epochs", type=int, default=5000, help="Number of training epochs"
)
parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
parser.add_argument("--num_workers", type=int, default=2, help="DataLoader num_workers")
from training_utils import discriminator_train, generator_train
import file_utils as Data
import torchaudio.transforms as T
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--generator", type=str, default=None,
help="Path to the generator model file")
parser.add_argument("--discriminator", type=str, default=None,
help="Path to the discriminator model file")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning")
parser.add_argument("--debug", action="store_true", help="Print debug logs")
parser.add_argument(
"--no_pin_memory", action="store_true", help="Disable pin_memory even on CUDA"
)
parser.add_argument("--continue_training", action="store_true", help="Continue training using temp_generator and temp_discriminator models")
args = parser.parse_args()
# ---------------------------
# Init accelerator
# ---------------------------
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
accelerator = Accelerator(mixed_precision="bf16")
# Parameters
sample_rate = 44100
n_fft = 2048
hop_length = 256
win_length = n_fft
n_mels = 128
n_mfcc = 20 # If using MFCC
mfcc_transform = T.MFCC(
sample_rate,
n_mfcc,
melkwargs = {'n_fft': n_fft, 'hop_length': hop_length}
).to(device)
mel_transform = T.MelSpectrogram(
sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length,
win_length=win_length, n_mels=n_mels, power=1.0 # Magnitude Mel
).to(device)
stft_transform = T.Spectrogram(
n_fft=n_fft, win_length=win_length, hop_length=hop_length
).to(device)
debug = args.debug
# Initialize dataset and dataloader
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, device)
models_dir = "models"
os.makedirs(models_dir, exist_ok=True)
audio_output_dir = "output"
os.makedirs(audio_output_dir, exist_ok=True)
# ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
# ========= MODELS =========
# ---------------------------
# Models
# ---------------------------
generator = SISUGenerator()
discriminator = SISUDiscriminator()
accelerator.print("🔨 | Compiling models...")
epoch: int = args.epoch
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
generator = torch.compile(generator)
discriminator = torch.compile(discriminator)
if args.continue_training:
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
epoch = epoch_from_file["epoch"] + 1
else:
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
if args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
accelerator.print("✅ | Compiling done!")
# ---------------------------
# Dataset / DataLoader
# ---------------------------
accelerator.print("📊 | Fetching dataset...")
dataset = AudioDataset("./dataset")
sampler = DistributedSampler(dataset) if accelerator.num_processes > 1 else None
pin_memory = torch.cuda.is_available() and not args.no_pin_memory
train_loader = DataLoader(
dataset,
sampler=sampler,
batch_size=args.batch_size,
shuffle=(sampler is None),
num_workers=args.num_workers,
pin_memory=pin_memory,
persistent_workers=pin_memory,
)
if not train_loader or not train_loader.batch_size or train_loader.batch_size == 0:
accelerator.print("🪹 | There is no data to train with! Exiting...")
exit()
loader_batch_size = train_loader.batch_size
accelerator.print("✅ | Dataset fetched!")
# ---------------------------
# Losses / Optimizers / Scalers
# ---------------------------
optimizer_g = optim.AdamW(
generator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
)
optimizer_d = optim.AdamW(
discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
)
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_g, mode="min", factor=0.5, patience=5
)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_d, mode="min", factor=0.5, patience=5
)
generator = generator.to(device)
discriminator = discriminator.to(device)
# Loss
criterion_g = nn.BCEWithLogitsLoss()
criterion_d = nn.MSELoss()
criterion_d = nn.BCEWithLogitsLoss()
# ---------------------------
# Prepare accelerator
# ---------------------------
# Optimizers
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
generator, discriminator, optimizer_g, optimizer_d, train_loader = accelerator.prepare(
generator, discriminator, optimizer_g, optimizer_d, train_loader
)
# Scheduler
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
# ---------------------------
# Checkpoint helpers
# ---------------------------
models_dir = "./models"
os.makedirs(models_dir, exist_ok=True)
def start_training():
generator_epochs = 5000
for generator_epoch in range(generator_epochs):
low_quality_audio = (torch.empty((1)), 1)
high_quality_audio = (torch.empty((1)), 1)
ai_enhanced_audio = (torch.empty((1)), 1)
times_correct = 0
def save_ckpt(path, epoch):
accelerator.wait_for_everyone()
if accelerator.is_main_process:
accelerator.save(
{
"epoch": epoch,
"G": accelerator.unwrap_model(generator).state_dict(),
"D": accelerator.unwrap_model(discriminator).state_dict(),
"optG": optimizer_g.state_dict(),
"optD": optimizer_d.state_dict(),
"schedG": scheduler_g.state_dict(),
"schedD": scheduler_d.state_dict(),
},
path,
)
# ========= TRAINING =========
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
# for high_quality_clip, low_quality_clip in train_data_loader:
high_quality_sample = (high_quality_clip[0], high_quality_clip[1])
low_quality_sample = (low_quality_clip[0], low_quality_clip[1])
# ========= LABELS =========
batch_size = high_quality_clip[0].size(0)
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
start_epoch = 0
if args.resume:
ckpt_path = os.path.join(models_dir, "last.pt")
ckpt = torch.load(ckpt_path)
accelerator.unwrap_model(generator).load_state_dict(ckpt["G"])
accelerator.unwrap_model(discriminator).load_state_dict(ckpt["D"])
optimizer_g.load_state_dict(ckpt["optG"])
optimizer_d.load_state_dict(ckpt["optD"])
scheduler_g.load_state_dict(ckpt["schedG"])
scheduler_d.load_state_dict(ckpt["schedD"])
start_epoch = ckpt.get("epoch", 1)
accelerator.print(f"🔁 | Resumed from epoch {start_epoch}!")
real_buf = torch.full(
(loader_batch_size, 1), 1, device=accelerator.device, dtype=torch.float32
)
fake_buf = torch.zeros(
(loader_batch_size, 1), device=accelerator.device, dtype=torch.float32
)
accelerator.print("🏋️ | Started training...")
try:
for epoch in range(start_epoch, args.epochs):
generator.train()
# ========= DISCRIMINATOR =========
discriminator.train()
running_d, running_g, steps = 0.0, 0.0, 0
for i, (
(high_quality, low_quality),
(high_sample_rate, low_sample_rate),
) in enumerate(tqdm.tqdm(train_loader, desc=f"Epoch {epoch}")):
batch_size = high_quality.size(0)
real_labels = real_buf[:batch_size].to(accelerator.device)
fake_labels = fake_buf[:batch_size].to(accelerator.device)
# --- Discriminator ---
optimizer_d.zero_grad(set_to_none=True)
with accelerator.autocast():
d_loss = discriminator_train(
high_quality,
low_quality,
high_quality_sample,
low_quality_sample,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
accelerator.backward(d_loss)
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), 1)
optimizer_d.step()
# --- Generator ---
optimizer_g.zero_grad(set_to_none=True)
with accelerator.autocast():
g_total, g_adv = generator_train(
low_quality,
high_quality,
# ========= GENERATOR =========
generator.train()
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
low_quality_sample,
high_quality_sample,
real_labels,
generator,
discriminator,
criterion_d,
optimizer_g,
device,
mel_transform,
stft_transform,
mfcc_transform
)
accelerator.backward(g_total)
torch.nn.utils.clip_grad_norm_(generator.parameters(), 1)
optimizer_g.step()
if debug:
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
scheduler_d.step(d_loss.detach())
scheduler_g.step(adversarial_loss.detach())
d_val = accelerator.gather(d_loss.detach()).mean()
g_val = accelerator.gather(g_total.detach()).mean()
# ========= SAVE LATEST AUDIO =========
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0])
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0])
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0])
if torch.isfinite(d_val):
running_d += d_val.item()
else:
accelerator.print(
f"🫥 | NaN in discriminator loss at step {i}, skipping update."
)
new_epoch = generator_epoch+epoch
if torch.isfinite(g_val):
running_g += g_val.item()
else:
accelerator.print(
f"🫥 | NaN in generator loss at step {i}, skipping update."
)
if generator_epoch % 25 == 0:
print(f"Saved epoch {new_epoch}!")
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
steps += 1
#if debug:
# print(generator.state_dict().keys())
# print(discriminator.state_dict().keys())
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
# epoch averages & schedulers
if steps == 0:
accelerator.print("🪹 | No steps in epoch (empty dataloader?). Exiting.")
break
mean_d = running_d / steps
mean_g = running_g / steps
torch.save(discriminator, "models/epoch-5000-discriminator.pt")
torch.save(generator, "models/epoch-5000-generator.pt")
print("Training complete!")
scheduler_d.step(mean_d)
scheduler_g.step(mean_g)
save_ckpt(os.path.join(models_dir, "last.pt"), epoch)
accelerator.print(f"🤝 | Epoch {epoch} done | D {mean_d:.4f} | G {mean_g:.4f}")
except Exception:
try:
save_ckpt(os.path.join(models_dir, "crash_last.pt"), epoch)
accelerator.print(f"💾 | Saved crash checkpoint for epoch {epoch}")
except Exception as e:
accelerator.print("😬 | Failed saving crash checkpoint:", e)
raise
accelerator.print("🏁 | Training finished.")
start_training()

144
training_utils.py Normal file
View File

@@ -0,0 +1,144 @@
import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
import torchaudio.transforms as T
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
mfccs_true = mfcc_transform(y_true)
mfccs_pred = mfcc_transform(y_pred)
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len]
loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
# Ensure same time dimension length (due to potential framing differences)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
# L1 Loss (Mean Absolute Error)
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
return loss
def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
return loss
def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
return loss
def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
loss = torch.mean(norm_diff / (norm_true + eps))
return loss
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
optimizer.zero_grad()
# Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality[0])
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
with torch.no_grad():
generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output)
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
d_loss = (d_loss_real + d_loss_fake) / 2.0
d_loss.backward()
# Optional: Gradient Clipping (can be helpful)
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer.step()
return d_loss
def generator_train(
low_quality,
high_quality,
real_labels,
generator,
discriminator,
adv_criterion,
g_optimizer,
device,
mel_transform: T.MelSpectrogram,
stft_transform: T.Spectrogram,
mfcc_transform: T.MFCC,
lambda_adv: float = 1.0,
lambda_mel_l1: float = 10.0,
lambda_log_stft: float = 1.0,
lambda_mfcc: float = 1.0
):
g_optimizer.zero_grad()
generator_output = generator(low_quality[0])
discriminator_decision = discriminator(generator_output)
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
mel_l1 = 0.0
log_stft_l1 = 0.0
mfcc_l = 0.0
# Calculate Mel L1 Loss if weight is positive
if lambda_mel_l1 > 0:
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output)
# Calculate Log STFT L1 Loss if weight is positive
if lambda_log_stft > 0:
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality[0], generator_output)
# Calculate MFCC Loss if weight is positive
if lambda_mfcc > 0:
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality[0], generator_output)
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
combined_loss = (lambda_adv * adversarial_loss) + \
(lambda_mel_l1 * mel_l1_tensor) + \
(lambda_log_stft * log_stft_l1_tensor) + \
(lambda_mfcc * mfcc_l_tensor)
combined_loss.backward()
# Optional: Gradient Clipping
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
g_optimizer.step()
# 6. Return values for logging
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor

View File

@@ -1,87 +0,0 @@
from typing import Dict, List
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio.transforms as T
class MultiResolutionSTFTLoss(nn.Module):
"""
Multi-resolution STFT loss.
Combines spectral convergence loss and log-magnitude loss
across multiple STFT resolutions.
"""
def __init__(
self,
fft_sizes: List[int] = [1024, 2048, 512],
hop_sizes: List[int] = [120, 240, 50],
win_lengths: List[int] = [600, 1200, 240],
eps: float = 1e-7,
):
super().__init__()
self.eps = eps
self.n_resolutions = len(fft_sizes)
self.stft_transforms = nn.ModuleList()
for n_fft, hop_len, win_len in zip(fft_sizes, hop_sizes, win_lengths):
window = torch.hann_window(win_len)
stft = T.Spectrogram(
n_fft=n_fft,
hop_length=hop_len,
win_length=win_len,
window_fn=lambda _: window,
power=None, # Keep complex output
center=True,
pad_mode="reflect",
normalized=False,
)
self.stft_transforms.append(stft)
def forward(
self, y_true: torch.Tensor, y_pred: torch.Tensor
) -> Dict[str, torch.Tensor]:
"""
Args:
y_true: (B, T) or (B, 1, T) waveform
y_pred: (B, T) or (B, 1, T) waveform
"""
# Ensure correct shape (B, T)
if y_true.dim() == 3 and y_true.size(1) == 1:
y_true = y_true.squeeze(1)
if y_pred.dim() == 3 and y_pred.size(1) == 1:
y_pred = y_pred.squeeze(1)
sc_loss = 0.0
mag_loss = 0.0
for stft in self.stft_transforms:
stft = stft.to(y_pred.device)
# Complex STFTs: (B, F, T, 2)
stft_true = stft(y_true)
stft_pred = stft(y_pred)
# Magnitudes
stft_mag_true = torch.abs(stft_true)
stft_mag_pred = torch.abs(stft_pred)
# --- Spectral Convergence Loss ---
norm_true = torch.linalg.norm(stft_mag_true, dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, dim=(-2, -1))
sc_loss += torch.mean(norm_diff / (norm_true + self.eps))
# --- Log STFT Magnitude Loss ---
mag_loss += F.l1_loss(
torch.log(stft_mag_pred + self.eps),
torch.log(stft_mag_true + self.eps),
)
# Average across resolutions
sc_loss /= self.n_resolutions
mag_loss /= self.n_resolutions
total_loss = sc_loss + mag_loss
return {"total": total_loss, "sc": sc_loss, "mag": mag_loss}

View File

@@ -1,60 +0,0 @@
import torch
# In case if needed again...
# from utils.MultiResolutionSTFTLoss import MultiResolutionSTFTLoss
#
# stft_loss_fn = MultiResolutionSTFTLoss(
# fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240]
# )
def signal_mae(input_one: torch.Tensor, input_two: torch.Tensor) -> torch.Tensor:
absolute_difference = torch.abs(input_one - input_two)
return torch.mean(absolute_difference)
def discriminator_train(
high_quality,
low_quality,
high_labels,
low_labels,
discriminator,
generator,
criterion,
):
decision_high = discriminator(high_quality)
d_loss_high = criterion(decision_high, high_labels)
# print(f"Is this real?: {discriminator_decision_from_real} | {d_loss_real}")
decision_low = discriminator(low_quality)
d_loss_low = criterion(decision_low, low_labels)
# print(f"Is this real?: {discriminator_decision_from_fake} | {d_loss_fake}")
with torch.no_grad():
generator_quality = generator(low_quality)
decision_gen = discriminator(generator_quality)
d_loss_gen = criterion(decision_gen, low_labels)
noise = torch.rand_like(high_quality) * 0.08
decision_noise = discriminator(high_quality + noise)
d_loss_noise = criterion(decision_noise, low_labels)
d_loss = (d_loss_high + d_loss_low + d_loss_gen + d_loss_noise) / 4.0
return d_loss
def generator_train(
low_quality, high_quality, real_labels, generator, discriminator, adv_criterion
):
generator_output = generator(low_quality)
discriminator_decision = discriminator(generator_output)
adversarial_loss = adv_criterion(discriminator_decision, real_labels)
# Signal similarity
similarity_loss = signal_mae(generator_output, high_quality)
combined_loss = adversarial_loss + (similarity_loss * 100)
return combined_loss, adversarial_loss

View File